論文の概要: Post-hurricane building damage assessment using street-view imagery and structured data: A multi-modal deep learning approach
- arxiv url: http://arxiv.org/abs/2404.07399v1
- Date: Thu, 11 Apr 2024 00:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:28:21.697023
- Title: Post-hurricane building damage assessment using street-view imagery and structured data: A multi-modal deep learning approach
- Title(参考訳): ストリートビュー画像と構造化データを用いたハリケーン後の建物被害評価:マルチモーダルディープラーニングアプローチ
- Authors: Zhuoqun Xue, Xiaojian Zhang, David O. Prevatt, Jennifer Bridge, Susu Xu, Xilei Zhao,
- Abstract要約: 我々は,Multi-Modal Swin Transformer (MMST) という,ハリケーン後の建物被害分類のための新しいマルチモーダルアプローチを提案する。
フロリダ州の2022年ハリケーンIanから収集したデータを用いて,提案したMMSTを実験的に訓練し,評価した。
その結果、MMSTは選択された最先端ベンチマークモデルよりも優れており、精度は92.67%であることがわかった。
- 参考スコア(独自算出の注目度): 1.748885212343545
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately assessing building damage is critical for disaster response and recovery. However, many existing models for detecting building damage have poor prediction accuracy due to their limited capabilities of identifying detailed, comprehensive structural and/or non-structural damage from the street-view image. Additionally, these models mainly rely on the imagery data for damage classification, failing to account for other critical information, such as wind speed, building characteristics, evacuation zones, and distance of the building to the hurricane track. To address these limitations, in this study, we propose a novel multi-modal (i.e., imagery and structured data) approach for post-hurricane building damage classification, named the Multi-Modal Swin Transformer (MMST). We empirically train and evaluate the proposed MMST using data collected from the 2022 Hurricane Ian in Florida, USA. Results show that MMST outperforms all selected state-of-the-art benchmark models and can achieve an accuracy of 92.67%, which are 7.71% improvement in accuracy compared to Visual Geometry Group 16 (VGG-16). In addition to the street-view imagery data, building value, building age, and wind speed are the most important predictors for damage level classification. The proposed MMST can be deployed to assist in rapid damage assessment and guide reconnaissance efforts in future hurricanes.
- Abstract(参考訳): 建物の損傷の正確な評価は、災害対応と復旧に不可欠である。
しかし, 建物損傷検出モデルの多くは, ストリートビュー画像からの詳細な構造的, 包括的, 非構造的損傷を識別する能力に限界があるため, 予測精度が低い。
さらに、これらのモデルは主に損傷分類のための画像データに依存しており、風速、建築特性、避難区域、建物からハリケーン軌道までの距離といった他の重要な情報を考慮していない。
これらの制約に対処するため,本研究では,マルチモーダルスウィントランス (MMST) と呼ばれる,ハリケーン後の建物被害分類のための新しいマルチモーダル(画像と構造データ)アプローチを提案する。
フロリダ州の2022年ハリケーンIanから収集したデータを用いて,提案したMMSTを実験的に訓練し,評価した。
その結果、MMSTは選択された最先端ベンチマークモデルよりも優れており、精度は92.67%で、Visual Geometry Group 16 (VGG-16)と比較して7.71%向上している。
ストリートビュー画像データに加えて、建物価値、建築年代、風速が被害レベルの分類において最も重要な予測因子である。
提案したMMSTは,早期の被害評価を支援し,将来のハリケーンにおける偵察活動のガイドとして利用することができる。
関連論文リスト
- DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
本稿では, 損傷評価, セグメンテーション, 分類において, ディープラーニングモデルによる2つの重要な課題を遂行するソリューションを提案する。
我々の最良のモデルは、建物識別セマンティックセグメンテーション畳み込みニューラルネットワーク(CNN)と建物損傷分類CNNを組み合わせ、合計F1スコアは0.66である。
本モデルでは比較的精度の高い建物を同定することができたが,災害タイプによる被害の分類は困難であることが判明した。
論文 参考訳(メタデータ) (2024-05-08T04:21:03Z) - Causality-informed Rapid Post-hurricane Building Damage Detection in
Large Scale from InSAR Imagery [6.331801334141028]
ハリケーンによる建物被害のタイムリーかつ正確な評価は、ハリケーン後の効果的な応答と復旧に不可欠である。
近年,リモートセンシング技術は,災害発生直後の大規模光合成開口レーダ(InSAR)画像データを提供する。
これらのInSAR画像は、しばしば、人為的活動と同様に、建物損傷、洪水・風による植生変化、および建物損傷の同時発生または同時発生によって引き起こされる、非常に騒々しく混ざった信号を含んでいる。
本稿では,InSAR画像からハリケーン後の建物被害の迅速検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T18:56:05Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle
Components [77.33782775860028]
車両の新たな総合ベンチマークであるCarPatchを紹介する。
内在カメラパラメータと外在カメラパラメータを付加した画像のセットに加えて、各ビューに対して対応する深度マップとセマンティックセグメンテーションマスクが生成されている。
グローバルとパートベースのメトリクスは、いくつかの最先端技術を評価し、比較し、より良い特徴付けるために定義され、使われてきた。
論文 参考訳(メタデータ) (2023-07-24T11:59:07Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
本研究は,人工知能(AI)と多視点画像を用いた,より信頼性の高い建築損傷分類を実現することを目的とする。
提案モデルでは, ハリケーン・ハーヴェイに続き, 調査対象の建物について, 専門家ラベル付きジオタグ付き画像を含む偵察視覚データセットを訓練し, 検証した。
論文 参考訳(メタデータ) (2022-08-06T01:04:13Z) - Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation
Features [0.2538209532048866]
本研究では,被災地の衛星画像と位置情報を活用し,災害後の被害建物を識別する混合データ手法を提案する。
この手法は、2017年のヒューストン大都市圏におけるハリケーン・ハーベイのケーススタディに基づいて、画像のみを用いて同様の作業を行うことで大幅に改善した。
本研究では,画像特徴に付加的な情報を提供するために位置情報機能の創造的な選択を行ったが,ドメイン知識や災害の種類に応じて,イベントの物理的挙動をモデル化するための他の機能を含めることはユーザ次第である。
論文 参考訳(メタデータ) (2020-12-15T21:30:19Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z) - An Attention-Based System for Damage Assessment Using Satellite Imagery [18.43310705820528]
本稿では,建物の損傷レベルを評価するため,Siam-U-Net-Attnモデルを提案する。
大規模建物被害評価データセットである xView2 上で提案手法の評価を行い,提案手法が正確な被害規模分類と建物分割を同時に達成できることを実証した。
論文 参考訳(メタデータ) (2020-04-14T16:37:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。