Diversity's Double-Edged Sword: Analyzing Race's Effect on Remote Pair Programming Interactions
- URL: http://arxiv.org/abs/2404.07427v1
- Date: Thu, 11 Apr 2024 01:58:38 GMT
- Title: Diversity's Double-Edged Sword: Analyzing Race's Effect on Remote Pair Programming Interactions
- Authors: Shandler A. Mason, Sandeep Kaur Kuttal,
- Abstract summary: Mixed-race pairs excelled in task distribution, shared decision-making, and role-exchange but encountered communication challenges, discomfort, and anxiety.
Our study emphasizes race's impact on remote pair programming and underscores the need for diverse tools and methods to address racial disparities for collaboration.
- Score: 0.5999777817331317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote pair programming is widely used in software development, but no research has examined how race affects these interactions. We embarked on this study due to the historical under representation of Black developers in the tech industry, with White developers comprising the majority. Our study involved 24 experienced developers, forming 12 gender-balanced same- and mixed-race pairs. Pairs collaborated on a programming task using the think-aloud method, followed by individual retrospective interviews. Our findings revealed elevated productivity scores for mixed-race pairs, with no differences in code quality between same- and mixed-race pairs. Mixed-race pairs excelled in task distribution, shared decision-making, and role-exchange but encountered communication challenges, discomfort, and anxiety, shedding light on the complexity of diversity dynamics. Our study emphasizes race's impact on remote pair programming and underscores the need for diverse tools and methods to address racial disparities for collaboration.
Related papers
- The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention [61.80236015147771]
We quantify the trade-off between using diversity interventions and preserving demographic factuality in T2I models.
Experiments on DoFaiR reveal that diversity-oriented instructions increase the number of different gender and racial groups.
We propose Fact-Augmented Intervention (FAI) to reflect on verbalized or retrieved factual information about gender and racial compositions of generation subjects in history.
arXiv Detail & Related papers (2024-06-29T09:09:42Z) - Greater than the sum of its parts: The role of minority and majority
status in collaborative problem-solving communication [0.0]
Collaborative problem-solving (CPS) is a vital skill used both in the workplace and in educational environments.
Women and underrepresented minorities (URMs) often face obstacles during collaborative interactions that hinder their key participation in these problem-solving conversations.
Here, we explored the communication patterns of minority and non-minority individuals working together in a CPS task.
arXiv Detail & Related papers (2024-03-07T17:17:20Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora.
We propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER)
Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches.
arXiv Detail & Related papers (2023-08-17T16:02:29Z) - NCL++: Nested Collaborative Learning for Long-Tailed Visual Recognition [63.90327120065928]
We propose a Nested Collaborative Learning (NCL++) which tackles the long-tailed learning problem by a collaborative learning.
To achieve the collaborative learning in long-tailed learning, the balanced online distillation is proposed.
In order to improve the meticulous distinguishing ability on the confusing categories, we further propose a Hard Category Mining.
arXiv Detail & Related papers (2023-06-29T06:10:40Z) - Psychological Aspects of Pair Programming [0.0]
This study aims to gain quantitative and qualitative insights into pair programming.
The research's goal is to use the findings to design further studies on pairing with artificial intelligence.
arXiv Detail & Related papers (2023-06-12T20:57:50Z) - The Double-Edged Sword of Diversity: How Diversity, Conflict, and
Psychological Safety Impact Software Teams [6.190511747986327]
Team diversity can be seen as a double-edged sword, bringing cognitive resources to teams at the risk of increased conflict.
This study views diversity through the lens of the categorization-elaboration model (CEM)
We investigated how diversity in gender, age, role, and cultural background impacts team effectiveness and conflict.
arXiv Detail & Related papers (2023-01-30T14:54:44Z) - Studying Bias in GANs through the Lens of Race [91.95264864405493]
We study how the performance and evaluation of generative image models are impacted by the racial composition of their training datasets.
Our results show that the racial compositions of generated images successfully preserve that of the training data.
However, we observe that truncation, a technique used to generate higher quality images during inference, exacerbates racial imbalances in the data.
arXiv Detail & Related papers (2022-09-06T22:25:56Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
We propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text.
Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.
arXiv Detail & Related papers (2022-05-26T13:26:03Z) - The Impact of Remote Pair Programming in an Upper-Level CS Course [0.0]
Pair programming has been highlighted as an active learning technique with several benefits to students.
This work analyzes the effect of pair programming in an upper-level computer science course.
arXiv Detail & Related papers (2022-04-06T20:01:01Z) - How diverse is the ACII community? Analysing gender, geographical and
business diversity of Affective Computing research [0.0]
ACII is the premier international forum for presenting the latest research on affective computing.
We measure diversity in terms of gender, geographic location and academia vs research centres vs industry, and consider three different actors: authors, keynote speakers and organizers.
Results raise awareness on the limited diversity in the field, in all studied facets, and compared to other AI conferences.
arXiv Detail & Related papers (2021-09-12T18:30:36Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
Job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms.
We propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching.
Our model is able to outperform state-of-the-art methods for job-resume matching.
arXiv Detail & Related papers (2020-09-25T03:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.