Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
- URL: http://arxiv.org/abs/2404.07449v1
- Date: Thu, 11 Apr 2024 03:09:34 GMT
- Title: Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
- Authors: Kanchana Ranasinghe, Satya Narayan Shukla, Omid Poursaeed, Michael S. Ryoo, Tsung-Yu Lin,
- Abstract summary: Integration of Large Language Models (LLMs) into visual domain tasks, resulting in visual-LLMs (V-LLMs), has enabled exceptional performance in vision-language tasks.
However, existing V-LLMs demonstrate weak spatial reasoning and localization awareness.
We explore how image-space coordinate based instruction fine-tuning objectives could inject spatial awareness into V-LLMs.
- Score: 38.02017186215372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integration of Large Language Models (LLMs) into visual domain tasks, resulting in visual-LLMs (V-LLMs), has enabled exceptional performance in vision-language tasks, particularly for visual question answering (VQA). However, existing V-LLMs (e.g. BLIP-2, LLaVA) demonstrate weak spatial reasoning and localization awareness. Despite generating highly descriptive and elaborate textual answers, these models fail at simple tasks like distinguishing a left vs right location. In this work, we explore how image-space coordinate based instruction fine-tuning objectives could inject spatial awareness into V-LLMs. We discover optimal coordinate representations, data-efficient instruction fine-tuning objectives, and pseudo-data generation strategies that lead to improved spatial awareness in V-LLMs. Additionally, our resulting model improves VQA across image and video domains, reduces undesired hallucination, and generates better contextual object descriptions. Experiments across 5 vision-language tasks involving 14 different datasets establish the clear performance improvements achieved by our proposed framework.
Related papers
- Re-Aligning Language to Visual Objects with an Agentic Workflow [73.73778652260911]
Language-based object detection aims to align visual objects with language expressions.
Recent studies leverage vision-language models (VLMs) to automatically generate human-like expressions for visual objects.
We propose an agentic workflow controlled by an LLM to re-align language to visual objects via adaptively adjusting image and text prompts.
arXiv Detail & Related papers (2025-03-30T16:41:12Z) - Integrating Frequency-Domain Representations with Low-Rank Adaptation in Vision-Language Models [0.6715525121432597]
This research presents a novel vision language model (VLM) framework to enhance feature extraction, scalability, and efficiency.
We evaluate the proposed model on caption generation and Visual Question Answering (VQA) tasks using benchmark datasets with varying levels of Gaussian noise.
Our model provides more detailed and contextually relevant responses, particularly for real-world images captured by a RealSense camera mounted on an Unmanned Ground Vehicle (UGV)
arXiv Detail & Related papers (2025-03-08T01:22:10Z) - Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion) is an enhanced diffusion model that boosts underlying semantics learning, computational efficiency, and in-context learning capabilities.
We present a Feedback-Aided Learning (FAL) framework, which leverages feedback signals to guide the model in capturing semantic details.
We also propose a plug-and-play Efficient Sampling Strategy (ESS) for dense sampling at time steps with high-noise levels.
arXiv Detail & Related papers (2025-03-06T03:06:22Z) - Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors.
We propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details.
arXiv Detail & Related papers (2025-02-19T18:05:42Z) - Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering [10.505845766495128]
Multimodal large language models (MLLMs) have made significant progress in integrating visual and textual modalities.
We propose a novel framework based on multimodal retrieval-augmented generation (RAG)
RAG introduces structured scene graphs to enhance object recognition, relationship identification, and spatial understanding within images.
arXiv Detail & Related papers (2024-12-30T13:16:08Z) - LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models [57.92316645992816]
Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space.
We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-Language Models (VLMs)
We demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.
arXiv Detail & Related papers (2024-12-03T06:15:04Z) - Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
We find that present-day Vision-Language Models (VLMs) lack a fundamental cognitive ability: learning to localize specific objects in a scene by taking into account the context.
This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning [19.399925987942204]
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks.
Most tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments.
We introduce Sparkle: a framework that uses synthetic data generation to provide targeted supervision for vision language models (VLMs) in three basic spatial capabilities.
arXiv Detail & Related papers (2024-10-21T16:26:09Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
Large Language Models (LLMs) are increasingly being merged with Visual Language Models (VLMs) to enable new capabilities.
We show that, for object and scene recognition, VLMs that do not leverage LLMs can achieve better performance than VLMs that do.
We propose a pragmatic solution: a lightweight fix involving a relatively small LLM that efficiently routes visual tasks to the most suitable model for the task.
arXiv Detail & Related papers (2024-10-03T23:40:21Z) - Discriminative Spatial-Semantic VOS Solution: 1st Place Solution for 6th LSVOS [68.47681139026666]
Video object segmentation (VOS) is a crucial task in computer vision.
Current VOS methods struggle with complex scenes and prolonged object motions.
This report introduces a discriminative spatial-temporal VOS model.
arXiv Detail & Related papers (2024-08-29T10:47:17Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection [107.15164718585666]
We investigate the root cause of VLMs' biased prediction under the open vocabulary detection context.
Our observations lead to a simple yet effective paradigm, coded MarvelOVD, that generates significantly better training targets.
Our method outperforms the other state-of-the-arts by significant margins.
arXiv Detail & Related papers (2024-07-31T09:23:57Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
Vision language models (VLMs) are an exciting emerging class of language models (LMs)
One understudied capability inVLMs is visual spatial planning.
Our study introduces a benchmark that evaluates the spatial planning capability in these models in general.
arXiv Detail & Related papers (2024-07-02T00:24:01Z) - Learning by Correction: Efficient Tuning Task for Zero-Shot Generative Vision-Language Reasoning [22.93684323791136]
Generative vision-language models (VLMs) have shown impressive performance in zero-shot vision-language tasks like image captioning and visual question answering.
We introduce Image-Conditioned Caption Correction (ICCC), a novel pre-training task designed to enhance ICCC's zero-shot performance without the need for labeled task.
Experimental results on BLIP-2 and InstructBLIP demonstrate significant improvements in zero-shot image-text generation-based tasks through ICCC instruction tuning.
arXiv Detail & Related papers (2024-04-01T04:28:01Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually.
We propose to improve phrase grounding models' ability on localizing the active objects by: learning the role of objects undergoing change and extracting them accurately from the instructions.
We evaluate our framework on Ego4D and Epic-Kitchens datasets.
arXiv Detail & Related papers (2023-10-23T16:14:05Z) - Distribution-Aware Prompt Tuning for Vision-Language Models [20.02599087680773]
A key to prompt tuning is the feature space alignment between two modalities via learnable vectors with model parameters fixed.
Inspired by this observation, we proposed distribution-aware prompt tuning (DAPT) for vision-language models.
Our experiments on 11 benchmark datasets demonstrate that our method significantly improves generalizability.
arXiv Detail & Related papers (2023-09-06T23:49:11Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.