Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
- URL: http://arxiv.org/abs/2506.22146v2
- Date: Wed, 02 Jul 2025 14:31:49 GMT
- Title: Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
- Authors: Amirmohammad Izadi, Mohammad Ali Banayeeanzade, Fatemeh Askari, Ali Rahimiakbar, Mohammad Mahdi Vahedi, Hosein Hasani, Mahdieh Soleymani Baghshah,
- Abstract summary: This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures.<n>We empirically demonstrate substantial performance improvements across core visual reasoning tasks.
- Score: 3.090279286701713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
Related papers
- Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.<n>Our method performs dominant token selection and lightweight contextual merging at multiple stages, enabling fine-grained visual information to be retained even under aggressive token budgets.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs [98.27348724529257]
We introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions.<n>Models trained with the ViCrit Task exhibit substantial gains across a variety of vision-language models benchmarks.
arXiv Detail & Related papers (2025-06-11T19:16:54Z) - Caption This, Reason That: VLMs Caught in the Middle [3.4820139118440676]
Vision-Language Models (VLMs) have shown remarkable progress in visual understanding in recent years.<n>They still lag behind human capabilities in specific visual tasks such as counting or relational reasoning.<n>We analyze VLM performance along core cognitive axes: Perception, Attention, and Memory.
arXiv Detail & Related papers (2025-05-24T14:25:48Z) - Top-Down Compression: Revisit Efficient Vision Token Projection for Visual Instruction Tuning [70.57180215148125]
Visual instruction tuning aims to enable large language models to comprehend the visual world.<n>Existing methods often grapple with the intractable trade-off between accuracy and efficiency.<n>We present LLaVA-Meteor, a novel approach that strategically compresses visual tokens without compromising core information.
arXiv Detail & Related papers (2025-05-17T10:22:29Z) - Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors.<n>We propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details.
arXiv Detail & Related papers (2025-02-19T18:05:42Z) - Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent [72.1517476116743]
Recent MLLMs have shown emerging visual understanding and reasoning abilities after being pre-trained on large-scale multimodal datasets.<n>Existing approaches, such as direct fine-tuning and continual learning methods, fail to explicitly address this issue.<n>We introduce a novel perspective leveraging effective rank to quantify the degradation of visual representation forgetting.<n>We propose a modality-decoupled gradient descent (MDGD) method that regulates gradient updates to maintain the effective rank of visual representations.
arXiv Detail & Related papers (2025-02-17T12:26:34Z) - Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding [94.64781599202882]
Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks.<n>They often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison.<n>We propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development.
arXiv Detail & Related papers (2025-02-17T06:54:49Z) - Leveraging Retrieval-Augmented Tags for Large Vision-Language Understanding in Complex Scenes [0.0]
Vision-Aware Retrieval-Augmented Prompting (VRAP) is a generative approach that enhances Large Vision-Language Models.<n>VRAP achieves state-of-the-art performance in fine-grained reasoning and multimodal understanding.
arXiv Detail & Related papers (2024-12-16T02:52:19Z) - Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs [38.02017186215372]
Integration of Large Language Models (LLMs) into visual domain tasks, resulting in visual-LLMs (V-LLMs), has enabled exceptional performance in vision-language tasks.
However, existing V-LLMs demonstrate weak spatial reasoning and localization awareness.
We explore how image-space coordinate based instruction fine-tuning objectives could inject spatial awareness into V-LLMs.
arXiv Detail & Related papers (2024-04-11T03:09:34Z) - Jointly Visual- and Semantic-Aware Graph Memory Networks for Temporal
Sentence Localization in Videos [67.12603318660689]
We propose a novel Hierarchical Visual- and Semantic-Aware Reasoning Network (HVSARN)
HVSARN enables both visual- and semantic-aware query reasoning from object-level to frame-level.
Experiments on three datasets demonstrate that our HVSARN achieves a new state-of-the-art performance.
arXiv Detail & Related papers (2023-03-02T08:00:22Z) - Co-Grounding Networks with Semantic Attention for Referring Expression
Comprehension in Videos [96.85840365678649]
We tackle the problem of referring expression comprehension in videos with an elegant one-stage framework.
We enhance the single-frame grounding accuracy by semantic attention learning and improve the cross-frame grounding consistency.
Our model is also applicable to referring expression comprehension in images, illustrated by the improved performance on the RefCOCO dataset.
arXiv Detail & Related papers (2021-03-23T06:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.