RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data
- URL: http://arxiv.org/abs/2404.07452v1
- Date: Thu, 11 Apr 2024 03:14:50 GMT
- Title: RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data
- Authors: Yupeng Cao, Zhi Chen, Qingyun Pei, Fabrizio Dimino, Lorenzo Ausiello, Prashant Kumar, K. P. Subbalakshmi, Papa Momar Ndiaye,
- Abstract summary: We introduce textbfRiskLabs, a novel framework that leverages large language models (LLMs) to analyze and predict financial risks.
Our approach involves a multi-stage process: extracting and analyzing Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates.
Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction.
- Score: 8.145265717016718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Artificial Intelligence (AI) techniques, particularly large language models (LLMs), in finance has garnered increasing academic attention. Despite progress, existing studies predominantly focus on tasks like financial text summarization, question-answering (Q$\&$A), and stock movement prediction (binary classification), with a notable gap in the application of LLMs for financial risk prediction. Addressing this gap, in this paper, we introduce \textbf{RiskLabs}, a novel framework that leverages LLMs to analyze and predict financial risks. RiskLabs uniquely combines different types of financial data, including textual and vocal information from Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates. Our approach involves a multi-stage process: initially extracting and analyzing ECC data using LLMs, followed by gathering and processing time-series data before the ECC dates to model and understand risk over different timeframes. Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction. Empirical experiment results demonstrate RiskLab's effectiveness in forecasting both volatility and variance in financial markets. Through comparative experiments, we demonstrate how different data sources contribute to financial risk assessment and discuss the critical role of LLMs in this context. Our findings not only contribute to the AI in finance application but also open new avenues for applying LLMs in financial risk assessment.
Related papers
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Analysis of Financial Risk Behavior Prediction Using Deep Learning and Big Data Algorithms [7.713045399751312]
This paper explores the feasibility and effectiveness of using deep learning and big data algorithms for financial risk behavior prediction.
A deep learning-based big data risk prediction framework is designed and experimentally validated on actual financial datasets.
arXiv Detail & Related papers (2024-10-25T08:52:04Z) - TradExpert: Revolutionizing Trading with Mixture of Expert LLMs [25.243258134817054]
TradeExpert is a novel framework that employs a mix of experts (MoE) approach, using four specialized LLMs.
Our experimental results demonstrate TradeExpert's superior performance across all trading scenarios.
arXiv Detail & Related papers (2024-10-16T20:24:16Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - FinPT: Financial Risk Prediction with Profile Tuning on Pretrained
Foundation Models [32.7825479037623]
FinPT is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models.
FinBench is a set of high-quality datasets on financial risks such as default, fraud, and churn.
arXiv Detail & Related papers (2023-07-22T09:27:05Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Financial data analysis application via multi-strategy text processing [0.2741266294612776]
This paper mainly focuses on the stock trading data and news about China A-share companies.
We present our efforts and plans in deep learning financial text processing application scenarios using natural language processing (NLP) and knowledge graph (KG) technologies.
arXiv Detail & Related papers (2022-04-25T01:56:36Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.