Cross-Asset Risk Management: Integrating LLMs for Real-Time Monitoring of Equity, Fixed Income, and Currency Markets
- URL: http://arxiv.org/abs/2504.04292v1
- Date: Sat, 05 Apr 2025 22:28:35 GMT
- Title: Cross-Asset Risk Management: Integrating LLMs for Real-Time Monitoring of Equity, Fixed Income, and Currency Markets
- Authors: Jie Yang, Yiqiu Tang, Yongjie Li, Lihua Zhang, Haoran Zhang,
- Abstract summary: Large language models (LLMs) have emerged as powerful tools in the field of finance.<n>We introduce a Cross-Asset Risk Management framework that utilizes LLMs to facilitate real-time monitoring of equity, fixed income, and currency markets.
- Score: 30.815524322885754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as powerful tools in the field of finance, particularly for risk management across different asset classes. In this work, we introduce a Cross-Asset Risk Management framework that utilizes LLMs to facilitate real-time monitoring of equity, fixed income, and currency markets. This innovative approach enables dynamic risk assessment by aggregating diverse data sources, ultimately enhancing decision-making processes. Our model effectively synthesizes and analyzes market signals to identify potential risks and opportunities while providing a holistic view of asset classes. By employing advanced analytics, we leverage LLMs to interpret financial texts, news articles, and market reports, ensuring that risks are contextualized within broader market narratives. Extensive backtesting and real-time simulations validate the framework, showing increased accuracy in predicting market shifts compared to conventional methods. The focus on real-time data integration enhances responsiveness, allowing financial institutions to manage risks adeptly under varying market conditions and promoting financial stability through the advanced application of LLMs in risk analysis.
Related papers
- Dynamic Hedging Strategies in Derivatives Markets with LLM-Driven Sentiment and News Analytics [30.815524322885754]
This paper introduces a novel framework that leverages large language models (LLMs) for sentiment analysis and news analytics to inform hedging decisions.<n>The framework allows for real-time adjustments to hedging strategies, adapting positions based on continuous sentiment signals.
arXiv Detail & Related papers (2025-04-05T22:35:06Z) - DeepFund: Will LLM be Professional at Fund Investment? A Live Arena Perspective [10.932591941137698]
This paper introduces DeepFund, a comprehensive platform for evaluating Large Language Models (LLMs) in a simulated live environment.
Our approach implements a multi agent framework where LLMs serve as both analysts and managers, creating a realistic simulation of investment decision making.
We provide a web interface that visualizes model performance across different market conditions and investment parameters, enabling detailed comparative analysis.
arXiv Detail & Related papers (2025-03-24T03:32:13Z) - Bridging Language Models and Financial Analysis [49.361943182322385]
The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing.<n>Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts.<n>Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry.
arXiv Detail & Related papers (2025-03-14T01:35:20Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Automate Strategy Finding with LLM in Quant Investment [7.791955682592063]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data [8.145265717016718]
We introduce textbfRiskLabs, a novel framework that leverages large language models (LLMs) to analyze and predict financial risks.
Our approach involves a multi-stage process: extracting and analyzing Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates.
Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction.
arXiv Detail & Related papers (2024-04-11T03:14:50Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
arXiv Detail & Related papers (2024-02-01T11:31:26Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.