論文の概要: "Confidently Nonsensical?'': A Critical Survey on the Perspectives and Challenges of 'Hallucinations' in NLP
- arxiv url: http://arxiv.org/abs/2404.07461v1
- Date: Thu, 11 Apr 2024 03:51:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:08:41.556166
- Title: "Confidently Nonsensical?'': A Critical Survey on the Perspectives and Challenges of 'Hallucinations' in NLP
- Title(参考訳): 非感覚的」:NLPにおける「幻覚」の展望と課題
- Authors: Pranav Narayanan Venkit, Tatiana Chakravorti, Vipul Gupta, Heidi Biggs, Mukund Srinath, Koustava Goswami, Sarah Rajtmajer, Shomir Wilson,
- Abstract要約: 大規模言語モデル(LLM)における幻覚は,ピアレビュー文学においてどのように特徴づけられるかを検討する。
NLPおよびAI分野の実践者171名を対象に,幻覚に関するさまざまな視点を捉えた調査を行った。
- 参考スコア(独自算出の注目度): 5.902314505344211
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate how hallucination in large language models (LLM) is characterized in peer-reviewed literature using a critical examination of 103 publications across NLP research. Through a comprehensive review of sociological and technological literature, we identify a lack of agreement with the term `hallucination.' Additionally, we conduct a survey with 171 practitioners from the field of NLP and AI to capture varying perspectives on hallucination. Our analysis underscores the necessity for explicit definitions and frameworks outlining hallucination within NLP, highlighting potential challenges, and our survey inputs provide a thematic understanding of the influence and ramifications of hallucination in society.
- Abstract(参考訳): 大規模言語モデル (LLM) における幻覚は, NLP研究における103の出版物に対する批判的評価を用いて, ピアレビュー文学においてどのように特徴づけられるかを検討する。
社会学・技術文献の総合的なレビューを通じて、「幻覚」という用語との合意の欠如を特定する。
さらに,NLPとAIの分野の実践者171名を対象に,幻覚のさまざまな視点を捉えた調査を行った。
本分析は,NLPにおける幻覚の具体的定義と枠組みの必要性を浮き彫りにし,潜在的課題を浮き彫りにし,社会における幻覚の影響と影響のテーマ的理解を提供する。
関連論文リスト
- Evaluating and Analyzing Relationship Hallucinations in Large Vision-Language Models [69.79709804046325]
視覚関係の幻覚を評価するための新しいベンチマークであるR-Benchを紹介する。
R-Benchは、関係の存在に焦点を当てたイメージレベルの質問と、局所的な視覚的理解を評価するインスタンスレベルの質問を特徴としている。
我々は,関係関連性,主観関連性,関係対象性という,幻覚につながる3つの関係共起関係を同定する。
論文 参考訳(メタデータ) (2024-06-24T08:42:42Z) - From Insights to Actions: The Impact of Interpretability and Analysis Research on NLP [28.942812379900673]
解釈可能性と分析(IA)研究は、NLP内の成長するサブフィールドである。
我々は,IA研究がNLPの幅広い分野に与える影響を定量化する。
論文 参考訳(メタデータ) (2024-06-18T13:45:07Z) - HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation [19.318217051269382]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で大きく進歩した。
HalluDialは、対話レベルの幻覚自動評価のための、初めての総合的な大規模ベンチマークである。
ベンチマークには4,094の対話があり、合計146,856のサンプルが含まれている。
論文 参考訳(メタデータ) (2024-06-11T08:56:18Z) - ANAH: Analytical Annotation of Hallucinations in Large Language Models [65.12177400764506]
我々は、大言語モデルにおける幻覚の@textbfAN$alytical $textbfA$nnotationを提供するデータセットである$textbfANAH$を提示する。
ANAHは、700以上のトピックをカバーする4.3k LLM応答のための12kの文レベルのアノテーションで構成されている。
幻覚アノテーションの微粒化により, LLMの幻覚が解答に蓄積されることを定量的に確認し, ANAHを用いて幻覚アノテーションを訓練し, 評価する。
論文 参考訳(メタデータ) (2024-05-30T17:54:40Z) - Benchmarking Hallucination in Large Language Models based on
Unanswerable Math Word Problem [58.3723958800254]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて非常に効果的である。
それらは幻覚と呼ばれる曖昧な文脈で信頼できない予想を生じさせる可能性がある。
本稿では,不問答語問題(MWP)に基づく質問回答(QA)におけるLLM幻覚評価手法を提案する。
論文 参考訳(メタデータ) (2024-03-06T09:06:34Z) - In-Context Sharpness as Alerts: An Inner Representation Perspective for
Hallucination Mitigation [36.31646727970656]
大規模言語モデル(LLM)は、しばしば幻覚を起こし、事実の誤りを引き起こす。
正しい世代は、不正な世代に比べて、コンテキスト内のトークンの隠された状態において、よりシャープなコンテキストアクティベーションを持つ傾向がある。
本研究では,テキスト内隠れ状態のシャープネス'を定量化し,デコード処理に組み込むエントロピーに基づく計量法を提案する。
論文 参考訳(メタデータ) (2024-03-03T15:53:41Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
幻覚は、大規模言語モデル(LLM)の実践的実装において重要な課題となる。
本稿では,幻覚に対処するための選択的検索拡張プロセスにより,Lowenを改良する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T11:55:40Z) - Unified Hallucination Detection for Multimodal Large Language Models [44.333451078750954]
マルチモーダル大言語モデル(MLLM)は幻覚の重要な問題に悩まされている。
本稿では,幻覚検出手法の進歩を評価するために,メタ評価ベンチマークであるMHaluBenchを提案する。
我々は,幻覚の発生を確実に検証するために,一連の補助ツールを活用する,新しい統合型マルチモーダル幻覚検出フレームワークUNIHDを公表した。
論文 参考訳(メタデータ) (2024-02-05T16:56:11Z) - A Survey on Hallucination in Large Vision-Language Models [18.540878498840435]
LVLM(Large Vision-Language Models)は、実践的な実装の可能性から、AIの世界において注目を集めている。
しかし,「幻覚」は,現実の視覚的内容とそれに対応するテキスト生成のミスアライメントが,LVLMを活用する上で大きな課題となる。
我々は,LVLM関連幻覚を解明し,今後の緩和を促進するために検討する。
論文 参考訳(メタデータ) (2024-02-01T00:33:21Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
大規模言語モデル(LM)は、しばしば幻覚と呼ばれる事実的誤りを引き起こす傾向にある。
我々は,幻覚の包括的分類を導入し,幻覚が多様な形態で現れることを議論する。
本稿では, 幻覚自動検出のための新しいタスクを提案し, 新たな評価ベンチマークであるFavaBenchを構築した。
論文 参考訳(メタデータ) (2024-01-12T19:02:48Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。