論文の概要: LUCF-Net: Lightweight U-shaped Cascade Fusion Network for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.07473v1
- Date: Thu, 11 Apr 2024 04:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:08:41.535056
- Title: LUCF-Net: Lightweight U-shaped Cascade Fusion Network for Medical Image Segmentation
- Title(参考訳): LUCF-Net:医療画像分割のための軽量U字型カスケード核融合ネットワーク
- Authors: Songkai Sun, Qingshan She, Yuliang Ma, Rihui Li, Yingchun Zhang,
- Abstract要約: LUCF-Netは、医用画像分割のための軽量なU字型カスケード融合ネットワークである。
ローカルおよびグローバルの両方のモジュールを組み込んで、ローカルおよびグローバルモデリングの能力を高める。
競合セグメンテーション性能は6.93万のパラメータと6.6ギガバイトの浮動小数点演算で達成される。
- 参考スコア(独自算出の注目度): 2.4496130409854806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, the performance of existing U-shaped neural network architectures was enhanced for medical image segmentation by adding Transformer. Although Transformer architectures are powerful at extracting global information, its ability to capture local information is limited due to its high complexity. To address this challenge, we proposed a new lightweight U-shaped cascade fusion network (LUCF-Net) for medical image segmentation. It utilized an asymmetrical structural design and incorporated both local and global modules to enhance its capacity for local and global modeling. Additionally, a multi-layer cascade fusion decoding network was designed to further bolster the network's information fusion capabilities. Validation results achieved on multi-organ datasets in CT format, cardiac segmentation datasets in MRI format, and dermatology datasets in image format demonstrated that the proposed model outperformed other state-of-the-art methods in handling local-global information, achieving an improvement of 1.54% in Dice coefficient and 2.6 mm in Hausdorff distance on multi-organ segmentation. Furthermore, as a network that combines Convolutional Neural Network and Transformer architectures, it achieves competitive segmentation performance with only 6.93 million parameters and 6.6 gigabytes of floating point operations, without the need of pre-training. In summary, the proposed method demonstrated enhanced performance while retaining a simpler model design compared to other Transformer-based segmentation networks.
- Abstract(参考訳): 本研究では,トランスフォーマーを付加することにより,医用画像のセグメンテーションのために既存のU字型ニューラルネットワークアーキテクチャの性能を向上した。
トランスフォーマーアーキテクチャはグローバルな情報を抽出する能力があるが、その複雑さのため、ローカル情報をキャプチャする能力は限られている。
この課題に対処するため,医用画像分割のための軽量U字型カスケード融合ネットワーク (LUCF-Net) を提案した。
非対称な構造設計を採用し、局所的および大域的モデリングの能力を高めるために、局所的および大域的モジュールの両方を組み込んだ。
さらに、マルチレイヤのカスケード融合復号ネットワークが、ネットワークの情報融合機能をさらに強化するために設計された。
CT形式での多臓器データセット,MRI形式での心臓セグメンテーションデータセット,画像形式での皮膚科学データセットで得られた検証結果は,提案モデルが局所的言語情報を扱う上で,他の最先端手法よりも優れており,多臓器セグメンテーションにおけるDice係数1.54%,Hausdorff距離2.6mmの改善が達成された。
さらに、畳み込みニューラルネットワークとトランスフォーマーアーキテクチャを組み合わせたネットワークとして、事前トレーニングなしで6.93万のパラメータと6.6ギガバイトの浮動小数点演算で競合セグメンテーション性能を達成する。
要約して,提案手法は,他のTransformerベースのセグメンテーションネットワークと比較して,シンプルなモデル設計を維持しつつ,性能を向上することを示した。
関連論文リスト
- TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation [5.280523424712006]
U-Netは現在、医療画像セグメンテーションの最も広く使われているアーキテクチャである。
我々は、メモリ使用量と計算負荷を減らすためにkanを改善した。
このアプローチは、非線形関係をキャプチャするモデルの能力を高める。
論文 参考訳(メタデータ) (2024-09-23T02:52:49Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
医用画像の正確な分割作業のために,BRAU-Net++ というハイブリッドで効果的な CNN-Transformer ネットワークを提案する。
具体的には、BRAU-Net++は、U字型エンコーダデコーダ構造を設計するために、コアビルディングブロックとしてバイレベルルーティングアテンションを使用する。
提案手法は,そのベースラインであるBRAU-Netを含む,最先端の手法を超越した手法である。
論文 参考訳(メタデータ) (2024-01-01T10:49:09Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical
Image Segmentation [7.720152925974362]
MCPA(Multiscale Cross Perceptron Attention Network)と呼ばれる2次元医用画像分割モデルを提案する。
MCPAは、エンコーダ、デコーダ、クロスパーセプトロンの3つの主要コンポーネントで構成されている。
提案したMCPAモデルを,様々なタスクやデバイスから利用可能ないくつかの医用画像データセット上で評価した。
論文 参考訳(メタデータ) (2023-07-27T02:18:12Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z) - Multi-level Context Gating of Embedded Collective Knowledge for Medical
Image Segmentation [32.96604621259756]
医用画像分割のためのU-Netの拡張を提案する。
U-Net, Squeeze and Excitation (SE) block, bi-directional ConvLSTM (BConvLSTM), and the mechanism of dense convolutions。
提案モデルは6つのデータセットで評価される。
論文 参考訳(メタデータ) (2020-03-10T12:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。