Learning to Classify New Foods Incrementally Via Compressed Exemplars
- URL: http://arxiv.org/abs/2404.07507v1
- Date: Thu, 11 Apr 2024 06:55:44 GMT
- Title: Learning to Classify New Foods Incrementally Via Compressed Exemplars
- Authors: Justin Yang, Zhihao Duan, Jiangpeng He, Fengqing Zhu,
- Abstract summary: Food image classification systems play a crucial role in health monitoring and diet tracking through image-based dietary assessment techniques.
Existing food recognition systems rely on static datasets characterized by a pre-defined fixed number of food classes.
We introduce the concept of continuously learning a neural compression model to adaptively improve the quality of compressed data.
- Score: 8.277136664415513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Food image classification systems play a crucial role in health monitoring and diet tracking through image-based dietary assessment techniques. However, existing food recognition systems rely on static datasets characterized by a pre-defined fixed number of food classes. This contrasts drastically with the reality of food consumption, which features constantly changing data. Therefore, food image classification systems should adapt to and manage data that continuously evolves. This is where continual learning plays an important role. A challenge in continual learning is catastrophic forgetting, where ML models tend to discard old knowledge upon learning new information. While memory-replay algorithms have shown promise in mitigating this problem by storing old data as exemplars, they are hampered by the limited capacity of memory buffers, leading to an imbalance between new and previously learned data. To address this, our work explores the use of neural image compression to extend buffer size and enhance data diversity. We introduced the concept of continuously learning a neural compression model to adaptively improve the quality of compressed data and optimize the bitrates per pixel (bpp) to store more exemplars. Our extensive experiments, including evaluations on food-specific datasets including Food-101 and VFN-74, as well as the general dataset ImageNet-100, demonstrate improvements in classification accuracy. This progress is pivotal in advancing more realistic food recognition systems that are capable of adapting to continually evolving data. Moreover, the principles and methodologies we've developed hold promise for broader applications, extending their benefits to other domains of continual machine learning systems.
Related papers
- Deep Image-to-Recipe Translation [0.0]
Deep Image-to-Recipe Translation aims to bridge the gap between cherished food memories and the art of culinary creation.
Our primary objective involves predicting ingredients from a given food image.
Our approach emphasizes the importance of metrics such as Intersection over Union (IoU) and F1 score in scenarios where accuracy alone might be misleading.
arXiv Detail & Related papers (2024-07-01T02:33:07Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Diffusion Model with Clustering-based Conditioning for Food Image
Generation [22.154182296023404]
Deep learning-based techniques are commonly used to perform image analysis such as food classification, segmentation, and portion size estimation.
One potential solution is to use synthetic food images for data augmentation.
In this paper, we propose an effective clustering-based training framework, named ClusDiff, for generating high-quality and representative food images.
arXiv Detail & Related papers (2023-09-01T01:40:39Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
The paper presents a weakly supervised methodology for training food image classification and semantic segmentation models.
The proposed methodology is based on a multiple instance learning approach in combination with an attention-based mechanism.
We conduct experiments on two meta-classes within the FoodSeg103 data set to verify the feasibility of the proposed approach.
arXiv Detail & Related papers (2023-08-22T13:59:47Z) - Long-Tailed Continual Learning For Visual Food Recognition [5.377869029561348]
The distribution of food images in real life is usually long-tailed as a small number of popular food types are consumed more frequently than others.
We propose a novel end-to-end framework for long-tailed continual learning, which effectively addresses the catastrophic forgetting.
We also introduce a novel data augmentation technique by integrating class-activation-map (CAM) and CutMix.
arXiv Detail & Related papers (2023-07-01T00:55:05Z) - Transferring Knowledge for Food Image Segmentation using Transformers
and Convolutions [65.50975507723827]
Food image segmentation is an important task that has ubiquitous applications, such as estimating the nutritional value of a plate of food.
One challenge is that food items can overlap and mix, making them difficult to distinguish.
Two models are trained and compared, one based on convolutional neural networks and the other on Bidirectional representation for Image Transformers (BEiT)
The BEiT model outperforms the previous state-of-the-art model by achieving a mean intersection over union of 49.4 on FoodSeg103.
arXiv Detail & Related papers (2023-06-15T15:38:10Z) - Online Class-Incremental Learning For Real-World Food Image
Classification [8.438092346233054]
Real-world food consumption patterns, shaped by cultural, economic, and personal influences, involve dynamic and evolving data.
Online Class Incremental Learning (OCIL) addresses the challenge of learning continuously from a single-pass data stream.
We present an attachable Dynamic Model Update (DMU) module designed for existing ER methods, which enables the selection of relevant images for model training.
arXiv Detail & Related papers (2023-01-12T19:00:27Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Online Continual Learning For Visual Food Classification [7.704949298975352]
Existing methods require static datasets for training and are not capable of learning from sequentially available new food images.
We introduce a novel clustering based exemplar selection algorithm to store the most representative data belonging to each learned food.
Our results show significant improvements compared with existing state-of-the-art online continual learning methods.
arXiv Detail & Related papers (2021-08-15T17:48:03Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
Blind image quality assessment (BIQA) models fail to continually adapt to subpopulation shift.
Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets.
We formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets.
arXiv Detail & Related papers (2021-02-19T03:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.