論文の概要: Generalization Gap in Data Augmentation: Insights from Illumination
- arxiv url: http://arxiv.org/abs/2404.07514v2
- Date: Fri, 2 Aug 2024 00:06:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 18:13:29.863806
- Title: Generalization Gap in Data Augmentation: Insights from Illumination
- Title(参考訳): データ拡張における一般化ギャップ:照明からの洞察
- Authors: Jianqiang Xiao, Weiwen Guo, Junfeng Liu, Mengze Li,
- Abstract要約: 実世界の照明条件下で訓練されたモデルと、拡張現実で訓練されたモデルとの一般化の相違について検討する。
その結果,様々なデータ拡張手法を適用した結果,モデルの性能は大幅に向上した。
しかし、様々なデータ拡張手法を利用した後も、顕著な一般化のギャップが残っている。
- 参考スコア(独自算出の注目度): 3.470401787749558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of computer vision, data augmentation is widely used to enrich the feature complexity of training datasets with deep learning techniques. However, regarding the generalization capabilities of models, the difference in artificial features generated by data augmentation and natural visual features has not been fully revealed. This study introduces the concept of "visual representation variables" to define the possible visual variations in a task as a joint distribution of these variables. We focus on the visual representation variable "illumination", by simulating its distribution degradation and examining how data augmentation techniques enhance model performance on a classification task. Our goal is to investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions. Results indicate that after applying various data augmentation methods, model performance has significantly improved. Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods, emphasizing the critical role of feature diversity in the training set for enhancing model generalization.
- Abstract(参考訳): コンピュータビジョンの分野では、深層学習技術を用いてデータセットをトレーニングする際の特徴的複雑さを強化するために、データ拡張が広く用いられている。
しかし、モデルの一般化能力については、データ拡張によって生成された人工的特徴と自然な視覚的特徴との差が完全には明らかになっていない。
本研究では,視覚的表現変数の概念を導入し,タスクの視覚的変化をこれらの変数の共分散として定義する。
我々は,その分布劣化をシミュレーションし,データ拡張技術が分類タスクにおけるモデル性能をいかに向上させるかを調べることで,視覚表現変数「照明」に着目した。
我々のゴールは、拡張現実で訓練されたモデルと実世界の照明条件で訓練されたモデルとの一般化の違いを調査することである。
その結果,様々なデータ拡張手法を適用した結果,モデルの性能は大幅に向上した。
しかし、様々なデータ拡張手法を利用して、モデル一般化を強化するトレーニングセットにおける特徴多様性の重要な役割を強調した上で、注目すべき一般化ギャップが依然として残っている。
関連論文リスト
- Feature Augmentation for Self-supervised Contrastive Learning: A Closer Look [28.350278251132078]
本稿では,機能拡張(Feature Augmentation)として知られる機能空間でデータ拡張を行う統一フレームワークを提案する。
この戦略はドメインに依存しないため、元のものと同様の機能が追加され、データの多様性が向上する。
論文 参考訳(メタデータ) (2024-10-16T09:25:11Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
残差予測モデルはラベル付きデータの限られた多様性と量によって制約される。
本研究では,実世界のシーンの複雑さと変動性を保ちながら,自然画像の編集を行うディープ・サリエンシ・予測のための新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2024-09-11T14:36:24Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Robust Computer Vision in an Ever-Changing World: A Survey of Techniques
for Tackling Distribution Shifts [20.17397328893533]
AIアプリケーションは、ますます一般大衆に注目を集めている。
コンピュータビジョンモデルに関する理論的な仮定と、それらのモデルが現実世界に展開する際に直面する現実との間には、顕著なギャップがある。
このギャップの重要な理由の1つは、分散シフトとして知られる難しい問題である。
論文 参考訳(メタデータ) (2023-12-03T23:40:12Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
ロングテールモデルは高品質なデータに対する強い需要を示している。
データ中心のアプローチは、モデルパフォーマンスを改善するために、データの量と品質の両方を強化することを目的としています。
現在、情報強化の有効性を説明するメカニズムに関する研究が不足している。
論文 参考訳(メタデータ) (2023-11-03T06:34:37Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
我々は,データ拡張戦略により,Kinetics-100,UCF-101,HMDB-51データセットのパフォーマンスが期待できることを示す。
また,完全な教師付き設定でデータ拡張戦略を検証し,性能向上を実証した。
論文 参考訳(メタデータ) (2021-03-30T17:59:49Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。