論文の概要: GNN-based Probabilistic Supply and Inventory Predictions in Supply Chain Networks
- arxiv url: http://arxiv.org/abs/2404.07523v1
- Date: Thu, 11 Apr 2024 07:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:49:00.569483
- Title: GNN-based Probabilistic Supply and Inventory Predictions in Supply Chain Networks
- Title(参考訳): GNNによるサプライチェーンネットワークの確率的供給と在庫予測
- Authors: Hyung-il Ahn, Young Chol Song, Santiago Olivar, Hershel Mehta, Naveen Tewari,
- Abstract要約: グラフベースのサプライ予測(GSP)確率モデルを提案する。
それは、グラフ構造化履歴データ、需要予測、および元の供給計画入力を用いて、供給、在庫、不均衡を予測する。
グローバル消費財企業の大規模サプライチェーンの履歴データを用いて行った実験は、GSPが供給と在庫予測の精度を大幅に改善することを示した。
- 参考スコア(独自算出の注目度): 0.5825410941577593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successful supply chain optimization must mitigate imbalances between supply and demand over time. While accurate demand prediction is essential for supply planning, it alone does not suffice. The key to successful supply planning for optimal and viable execution lies in maximizing predictability for both demand and supply throughout an execution horizon. Therefore, enhancing the accuracy of supply predictions is imperative to create an attainable supply plan that matches demand without overstocking or understocking. However, in complex supply chain networks with numerous nodes and edges, accurate supply predictions are challenging due to dynamic node interactions, cascading supply delays, resource availability, production and logistic capabilities. Consequently, supply executions often deviate from their initial plans. To address this, we present the Graph-based Supply Prediction (GSP) probabilistic model. Our attention-based graph neural network (GNN) model predicts supplies, inventory, and imbalances using graph-structured historical data, demand forecasting, and original supply plan inputs. The experiments, conducted using historical data from a global consumer goods company's large-scale supply chain, demonstrate that GSP significantly improves supply and inventory prediction accuracy, potentially offering supply plan corrections to optimize executions.
- Abstract(参考訳): サプライチェーンの最適化が成功するには、供給と需要の不均衡を時間とともに軽減する必要がある。
供給計画には正確な需要予測が不可欠だが、それだけでは十分ではない。
最適かつ実行可能な実行のためのサプライ計画の成功の鍵は、実行地平線全体における需要とサプライの両方の予測可能性の最大化にある。
したがって、供給予測の精度を高めることは、過剰在庫や減産を伴わずに需要に合致する達成可能な供給計画を作成するために不可欠である。
しかし、多数のノードとエッジを持つ複雑なサプライチェーンネットワークでは、動的ノードの相互作用、カスケードされたサプライ遅延、リソース可用性、生産能力、ロジスティック機能により、正確なサプライ予測が困難である。
その結果、サプライ実行は、しばしば当初の計画から逸脱する。
これを解決するために、グラフベースのサプライ予測(GSP)確率モデルを提案する。
我々の注目に基づくグラフニューラルネットワーク(GNN)モデルは、グラフ構造化履歴データ、需要予測、および元の供給計画入力を用いて、供給、在庫、不均衡を予測する。
グローバル消費財企業の大規模サプライチェーンの履歴データを用いて行った実験は、GSPが供給と在庫予測の精度を大幅に改善し、実行を最適化するための供給計画修正を提供する可能性を実証した。
関連論文リスト
- On the Impact of PRB Load Uncertainty Forecasting for Sustainable Open RAN [2.526444902695476]
持続可能なOpen Radio Access Network(O-RAN)アーキテクチャへの移行は、リソース管理に新たな課題をもたらす。
本稿では,確率的予測手法を用いて物理資源ブロック(PRB)負荷を特徴付ける新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T15:25:20Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Generative Probabilistic Planning for Optimizing Supply Chain Networks [0.0]
本稿では,生成確率計画 (Generative Probabilistic Planning, IPP) と呼ばれる新しい生成AI技術を紹介する。
IPPは動的サプライアクションプランを生成し、時間的地平線上で全ネットワークノードにわたってグローバルに最適化される。
グローバルな消費財企業の履歴データを用いた実験により、IPPはサプライチェーンネットワークの客観的適応性、確率論的レジリエンス、動的プランニングを達成できることを示した。
論文 参考訳(メタデータ) (2024-04-11T07:06:58Z) - SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks [0.0]
グラフニューラルネットワーク(GNN)は、輸送、バイオインフォマティクス、言語処理、コンピュータビジョンなど、さまざまな領域で注目を集めている。
サプライチェーンネットワークは本質的にグラフのような構造であり、GNN方法論を適用するための主要な候補となる。
このアプローチの大きな欠点は、GNNを用いたサプライチェーン問題の研究と解決を容易にするために、実世界のベンチマークデータセットが存在しないことである。
論文 参考訳(メタデータ) (2024-01-27T05:14:17Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - A Knowledge Graph Perspective on Supply Chain Resilience [15.028130016717773]
世界的な危機と規制の進展はサプライチェーンの透明性とレジリエンスを高める必要がある。
サプライチェーンに関する情報、特により深いレベルでは、しばしば不透明で不完全である。
異なるデータソースを接続することにより、サプライネットワークを知識グラフとしてモデル化し、ティア3サプライヤーへの透明性を実現する。
論文 参考訳(メタデータ) (2023-05-15T10:14:30Z) - Enhancing Supply Chain Resilience: A Machine Learning Approach for
Predicting Product Availability Dates Under Disruption [2.294014185517203]
新型コロナウイルスのパンデミックや政治的・地域的な紛争が世界的なサプライチェーンに大きな打撃を与えている。
正確な可用性の予測は 物流運用を成功させる上で 重要な役割を担います
簡易回帰、ラッソ回帰、リッジ回帰、弾性ネット、ランダムフォレスト(RF)、グラディエントブースティングマシン(GBM)、ニューラルネットワークモデルなど、いくつかの回帰モデルを評価する。
論文 参考訳(メタデータ) (2023-04-28T15:22:20Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
深層学習技術を用いて,日・店・店レベルでの顧客販売予測問題に対処する3つの方法を開発した。
実験結果から,データ前処理を最小限に抑えた単純なシーケンスアーキテクチャを用いて,優れた性能を実現することができることを示す。
提案した解は約0.54の RMSLE を達成し、Kaggle コンペティションで提案された問題に対する他のより具体的な解と競合する。
論文 参考訳(メタデータ) (2022-04-16T12:03:52Z) - Data Considerations in Graph Representation Learning for Supply Chain
Networks [64.72135325074963]
本稿では,隠れた依存関係リンクを明らかにするためのグラフ表現学習手法を提案する。
本稿では,グローバルな自動車サプライチェーンネットワークのリンク予測における最先端の性能向上を実証する。
論文 参考訳(メタデータ) (2021-07-22T12:28:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。