Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening
- URL: http://arxiv.org/abs/2404.07543v1
- Date: Thu, 11 Apr 2024 08:11:36 GMT
- Title: Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening
- Authors: Yule Duan, Xiao Wu, Haoyu Deng, Liang-Jian Deng,
- Abstract summary: We introduce a content-adaptive non-local convolution (CANConv) for remote sensing image pansharpening.
CANConv employs adaptive convolution, ensuring spatial adaptability, and incorporates non-local self-similarity.
We also propose a corresponding network architecture, called CANNet, which mainly utilizes the multi-scale self-similarity.
- Score: 15.73548871484733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, machine learning-based methods for remote sensing pansharpening have progressed rapidly. However, existing pansharpening methods often do not fully exploit differentiating regional information in non-local spaces, thereby limiting the effectiveness of the methods and resulting in redundant learning parameters. In this paper, we introduce a so-called content-adaptive non-local convolution (CANConv), a novel method tailored for remote sensing image pansharpening. Specifically, CANConv employs adaptive convolution, ensuring spatial adaptability, and incorporates non-local self-similarity through the similarity relationship partition (SRP) and the partition-wise adaptive convolution (PWAC) sub-modules. Furthermore, we also propose a corresponding network architecture, called CANNet, which mainly utilizes the multi-scale self-similarity. Extensive experiments demonstrate the superior performance of CANConv, compared with recent promising fusion methods. Besides, we substantiate the method's effectiveness through visualization, ablation experiments, and comparison with existing methods on multiple test sets. The source code is publicly available at https://github.com/duanyll/CANConv.
Related papers
- Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
Out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution.
We propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection.
Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods.
arXiv Detail & Related papers (2024-03-16T04:35:04Z) - Adaptive Spot-Guided Transformer for Consistent Local Feature Matching [64.30749838423922]
We propose Adaptive Spot-Guided Transformer (ASTR) for local feature matching.
ASTR models the local consistency and scale variations in a unified coarse-to-fine architecture.
arXiv Detail & Related papers (2023-03-29T12:28:01Z) - Local Learning with Neuron Groups [15.578925277062657]
Local learning is an approach to model-parallelism that removes the standard end-to-end learning setup.
We study how local learning can be applied at the level of splitting layers or modules into sub-components.
arXiv Detail & Related papers (2023-01-18T16:25:10Z) - Weakly Supervised Semantic Segmentation via Progressive Patch Learning [39.87150496277798]
"Progressive Patch Learning" approach is proposed to improve the local details extraction of the classification.
"Patch Learning" destructs the feature maps into patches and independently processes each local patch in parallel before the final aggregation.
"Progressive Patch Learning" further extends the feature destruction and patch learning to multi-level granularities in a progressive manner.
arXiv Detail & Related papers (2022-09-16T09:54:17Z) - VLAD-VSA: Cross-Domain Face Presentation Attack Detection with
Vocabulary Separation and Adaptation [87.9994254822078]
For face presentation attack (PAD), most of the spoofing cues are subtle, local image patterns.
VLAD aggregation method is adopted to quantize local features with visual vocabulary locally partitioning the feature space.
Proposed vocabulary separation method divides vocabulary into domain-shared and domain-specific visual words.
arXiv Detail & Related papers (2022-02-21T15:27:41Z) - Seeking Similarities over Differences: Similarity-based Domain Alignment
for Adaptive Object Detection [86.98573522894961]
We propose a framework that generalizes the components commonly used by Unsupervised Domain Adaptation (UDA) algorithms for detection.
Specifically, we propose a novel UDA algorithm, ViSGA, that leverages the best design choices and introduces a simple but effective method to aggregate features at instance-level.
We show that both similarity-based grouping and adversarial training allows our model to focus on coarsely aligning feature groups, without being forced to match all instances across loosely aligned domains.
arXiv Detail & Related papers (2021-10-04T13:09:56Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.