Text-Video Retrieval with Global-Local Semantic Consistent Learning
- URL: http://arxiv.org/abs/2405.12710v3
- Date: Tue, 16 Jul 2024 03:56:11 GMT
- Title: Text-Video Retrieval with Global-Local Semantic Consistent Learning
- Authors: Haonan Zhang, Pengpeng Zeng, Lianli Gao, Jingkuan Song, Yihang Duan, Xinyu Lyu, Hengtao Shen,
- Abstract summary: We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
- Score: 122.15339128463715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapting large-scale image-text pre-training models, e.g., CLIP, to the video domain represents the current state-of-the-art for text-video retrieval. The primary approaches involve transferring text-video pairs to a common embedding space and leveraging cross-modal interactions on specific entities for semantic alignment. Though effective, these paradigms entail prohibitive computational costs, leading to inefficient retrieval. To address this, we propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL), which capitalizes on latent shared semantics across modalities for text-video retrieval. Specifically, we introduce a parameter-free global interaction module to explore coarse-grained alignment. Then, we devise a shared local interaction module that employs several learnable queries to capture latent semantic concepts for learning fine-grained alignment. Furthermore, an Inter-Consistency Loss (ICL) is devised to accomplish the concept alignment between the visual query and corresponding textual query, and an Intra-Diversity Loss (IDL) is developed to repulse the distribution within visual (textual) queries to generate more discriminative concepts. Extensive experiments on five widely used benchmarks (i.e., MSR-VTT, MSVD, DiDeMo, LSMDC, and ActivityNet) substantiate the superior effectiveness and efficiency of the proposed method. Remarkably, our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost. Code is available at: https://github.com/zchoi/GLSCL.
Related papers
- Mind the Gap: A Generalized Approach for Cross-Modal Embedding Alignment [0.0]
Retrieval-Augmented Generation (RAG) systems retrieve context across different text modalities due to semantic gaps.
We introduce a generalized projection-based method, inspired by adapter modules in transfer learning, that efficiently bridges these gaps.
Our approach emphasizes speed, accuracy, and data efficiency, requiring minimal resources for training and inference.
arXiv Detail & Related papers (2024-10-30T20:28:10Z) - Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
We propose a zero-shot method for adapting generalisable visual-textual priors from arbitrary VLM to facilitate moment-text alignment.
Experiments conducted on three VMR benchmark datasets demonstrate the notable performance advantages of our zero-shot algorithm.
arXiv Detail & Related papers (2023-09-01T13:06:50Z) - SOC: Semantic-Assisted Object Cluster for Referring Video Object
Segmentation [35.063881868130075]
This paper studies referring video object segmentation (RVOS) by boosting video-level visual-linguistic alignment.
We propose Semantic-assisted Object Cluster (SOC), which aggregates video content and textual guidance for unified temporal modeling and cross-modal alignment.
We conduct extensive experiments on popular RVOS benchmarks, and our method outperforms state-of-the-art competitors on all benchmarks by a remarkable margin.
arXiv Detail & Related papers (2023-05-26T15:13:44Z) - Expectation-Maximization Contrastive Learning for Compact
Video-and-Language Representations [54.62547989034184]
We propose Expectation-Maximization Contrastive Learning (EMCL) to learn compact video-and-language representations.
Specifically, we use the Expectation-Maximization algorithm to find a compact set of bases for the latent space.
Experiments on three benchmark text-video retrieval datasets prove that our EMCL can learn more discriminative video-and-language representations.
arXiv Detail & Related papers (2022-11-21T13:12:44Z) - Learning Commonsense-aware Moment-Text Alignment for Fast Video Temporal
Grounding [78.71529237748018]
Grounding temporal video segments described in natural language queries effectively and efficiently is a crucial capability needed in vision-and-language fields.
Most existing approaches adopt elaborately designed cross-modal interaction modules to improve the grounding performance.
We propose a commonsense-aware cross-modal alignment framework, which incorporates commonsense-guided visual and text representations into a complementary common space.
arXiv Detail & Related papers (2022-04-04T13:07:05Z) - Video Corpus Moment Retrieval with Contrastive Learning [56.249924768243375]
Video corpus moment retrieval (VCMR) is to retrieve a temporal moment that semantically corresponds to a given text query.
We propose a Retrieval and Localization Network with Contrastive Learning (ReLoCLNet) for VCMR.
Experimental results show that ReLoCLNet encodes text and video separately for efficiency, its retrieval accuracy is comparable with baselines adopting cross-modal interaction learning.
arXiv Detail & Related papers (2021-05-13T12:54:39Z) - Referring Image Segmentation via Cross-Modal Progressive Comprehension [94.70482302324704]
Referring image segmentation aims at segmenting the foreground masks of the entities that can well match the description given in the natural language expression.
Previous approaches tackle this problem using implicit feature interaction and fusion between visual and linguistic modalities.
We propose a Cross-Modal Progressive (CMPC) module and a Text-Guided Feature Exchange (TGFE) module to effectively address the challenging task.
arXiv Detail & Related papers (2020-10-01T16:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.