論文の概要: From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
- arxiv url: http://arxiv.org/abs/2404.07544v1
- Date: Thu, 11 Apr 2024 08:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:39:15.989879
- Title: From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
- Title(参考訳): 単語から数字へ:インコンテキストの例が与えられたとき、あなたの大きな言語モデルは秘密裏にレグレッタになる
- Authors: Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, Mihai Surdeanu,
- Abstract要約: 我々は,Llama2,GPT-4,Claude 3などの事前学習された大規模言語モデルが,文脈内例が与えられた場合の線形回帰や非線形回帰をいかにうまく行うかを分析する。
いくつかの大きな言語モデルでは、従来の教師付きメソッドに匹敵する(あるいはパフォーマンスに優れる)パフォーマンスで回帰タスクを実行できる。
- 参考スコア(独自算出の注目度): 17.398872494876365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
- Abstract(参考訳): 我々は,事前学習した大規模言語モデル(例えば,Llama2,GPT-4,Claude 3など)が,追加のトレーニングや勾配更新を伴わずに,文脈内例を与えられた場合の線形回帰や非線形回帰をいかにうまく行うかを分析する。
以上の結果から,複数の大規模言語モデル(GPT-4,Claude 3)は,ランダムフォレストやバッギング,グラディエントブースティングなど,従来の監視手法に匹敵する性能(あるいは優れた性能)で回帰処理を行うことができることがわかった。
例えば、挑戦的なFriedman #2回帰データセットでは、Claude 3がAdaBoost、SVM、Random Forest、KNN、Gradient Boostingといった多くの教師付きメソッドを上回っている。
次に、大規模言語モデルの性能が、文脈内例の個数でどの程度向上するかを考察する。
我々は、オンライン学習から後悔の概念を借用し、LLMがサブ線形後悔を得ることができることを実証的に示す。
関連論文リスト
- LIONs: An Empirically Optimized Approach to Align Language Models [31.225180404295536]
教師付き微調整,オフライン選好学習,オンライン選好学習からなる3段階学習パイプライン上で厳密な分析を行う。
我々は、シーケンスパッキング、SFTにおける損失マスキング、DPOにおける嗜好データセットサイズの増加、オンラインDPOトレーニングなどの手法を用いることで、言語モデルの性能が大幅に向上することを発見した。
論文 参考訳(メタデータ) (2024-07-09T04:34:39Z) - Code Representation Learning At Scale [75.04686476303436]
2段階の事前学習スキームを用いて,大量のコードデータを用いてコード表現学習を行う。
まず、マスキング言語モデリングにおけるランダム性と、プログラミング言語の構造的側面の両方を活用して、エンコーダを訓練する。
そして、教師なしの方法で強陰性かつ強正に構築された対照的な学習を通して表現を強化する。
論文 参考訳(メタデータ) (2024-02-02T22:19:15Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
大規模言語モデル(LLM)は、文脈内で学習する能力を示している。
文脈内学習の有効性は、選択した例の品質に大きく依存する。
高品質なインコンテキストの例を識別可能な高密度検索を反復的に学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-14T05:23:08Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
本稿では,トランスフォーマーに基づくインコンテキスト学習者が標準学習アルゴリズムを暗黙的に実装する仮説について検討する。
訓練された文脈内学習者は、勾配降下、隆起回帰、および正確な最小二乗回帰によって計算された予測値と密に一致していることを示す。
文脈内学習者がこれらの予測器とアルゴリズム的特徴を共有するという予備的証拠。
論文 参考訳(メタデータ) (2022-11-28T18:59:51Z) - Active Example Selection for In-Context Learning [26.942655002252568]
大規模言語モデルは、コンテキスト内学習によって様々なタスクを実行する能力を示す。
そこで本研究では,実例においてコンテキスト内学習性能が極めて不安定であることを示す。
実演例を選択するための一般化可能なポリシーを特定するための強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-08T19:00:02Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALMは、入力と生成時間ごとに異なる量の計算を動的に割り当てるフレームワークである。
ハイパフォーマンスを確実に維持しつつ、計算能力、潜在的スピードアップを最大3ドルまで削減する上で、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-14T17:00:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。