Differentially Private Reinforcement Learning with Self-Play
- URL: http://arxiv.org/abs/2404.07559v1
- Date: Thu, 11 Apr 2024 08:42:51 GMT
- Title: Differentially Private Reinforcement Learning with Self-Play
- Authors: Dan Qiao, Yu-Xiang Wang,
- Abstract summary: We study the problem of multi-agent reinforcement learning (multi-agent RL) with differential privacy (DP) constraints.
We first extend the definitions of Joint DP (JDP) and Local DP (LDP) to two-player zero-sum episodic Markov Games.
We design a provably efficient algorithm based on optimistic Nash value and privatization of Bernstein-type bonuses.
- Score: 18.124829682487558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of multi-agent reinforcement learning (multi-agent RL) with differential privacy (DP) constraints. This is well-motivated by various real-world applications involving sensitive data, where it is critical to protect users' private information. We first extend the definitions of Joint DP (JDP) and Local DP (LDP) to two-player zero-sum episodic Markov Games, where both definitions ensure trajectory-wise privacy protection. Then we design a provably efficient algorithm based on optimistic Nash value iteration and privatization of Bernstein-type bonuses. The algorithm is able to satisfy JDP and LDP requirements when instantiated with appropriate privacy mechanisms. Furthermore, for both notions of DP, our regret bound generalizes the best known result under the single-agent RL case, while our regret could also reduce to the best known result for multi-agent RL without privacy constraints. To the best of our knowledge, these are the first line of results towards understanding trajectory-wise privacy protection in multi-agent RL.
Related papers
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties.
We propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification.
arXiv Detail & Related papers (2024-10-24T03:39:55Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Differentially Private Reinforcement Learning with Linear Function
Approximation [3.42658286826597]
We study regret minimization in finite-horizon Markov decision processes (MDPs) under the constraints of differential privacy (DP)
Our results are achieved via a general procedure for learning in linear mixture MDPs under changing regularizers.
arXiv Detail & Related papers (2022-01-18T15:25:24Z) - Differentially Private Regret Minimization in Episodic Markov Decision
Processes [6.396288020763144]
We study regret in finite horizon tabular Markov decision processes (MDPs) under the constraints of differential privacy (DP)
This is motivated by the widespread applications of reinforcement learning (RL) in real-world sequential decision making problems.
arXiv Detail & Related papers (2021-12-20T15:12:23Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z) - Differentially Private Federated Bayesian Optimization with Distributed
Exploration [48.9049546219643]
We introduce differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms.
We show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee.
We also use real-world experiments to show that DP-FTS-DE induces a trade-off between privacy and utility.
arXiv Detail & Related papers (2021-10-27T04:11:06Z) - Smoothed Differential Privacy [55.415581832037084]
Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis.
In this paper, we propose a natural extension of DP following the worst average-case idea behind the celebrated smoothed analysis.
We prove that any discrete mechanism with sampling procedures is more private than what DP predicts, while many continuous mechanisms with sampling procedures are still non-private under smoothed DP.
arXiv Detail & Related papers (2021-07-04T06:55:45Z) - Local Differential Privacy for Regret Minimization in Reinforcement
Learning [33.679678503441565]
We study privacy in the context of finite-horizon Markov Decision Processes (MDPs)
We formulate this notion of privacy for RL by leveraging the local differential privacy (LDP) framework.
We present an optimistic algorithm that simultaneously satisfies $varepsilon$-LDP requirements.
arXiv Detail & Related papers (2020-10-15T14:13:26Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.