UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs
- URL: http://arxiv.org/abs/2404.07584v3
- Date: Mon, 22 Jul 2024 07:07:06 GMT
- Title: UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs
- Authors: Chaoqun He, Renjie Luo, Shengding Hu, Yuanqian Zhao, Jie Zhou, Hanghao Wu, Jiajie Zhang, Xu Han, Zhiyuan Liu, Maosong Sun,
- Abstract summary: This paper introduces UltraEval, a user-friendly evaluation framework characterized by its lightweight nature, comprehensiveness, modularity, and efficiency.
The resulting composability allows for the free combination of different models, tasks, prompts, benchmarks, and metrics within a unified evaluation workflow.
- Score: 74.1976921342982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluation is pivotal for refining Large Language Models (LLMs), pinpointing their capabilities, and guiding enhancements. The rapid development of LLMs calls for a lightweight and easy-to-use framework for swift evaluation deployment. However, considering various implementation details, developing a comprehensive evaluation platform is never easy. Existing platforms are often complex and poorly modularized, hindering seamless incorporation into research workflows. This paper introduces UltraEval, a user-friendly evaluation framework characterized by its lightweight nature, comprehensiveness, modularity, and efficiency. We identify and reimplement three core components of model evaluation (models, data, and metrics). The resulting composability allows for the free combination of different models, tasks, prompts, benchmarks, and metrics within a unified evaluation workflow. Additionally, UltraEval supports diverse models owing to a unified HTTP service and provides sufficient inference acceleration. UltraEval is now available for researchers publicly.
Related papers
- EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs [6.179084469089114]
This paper presents EasyJudge, a model developed to evaluate significant language model responses.
It is lightweight, precise, efficient, and user-friendly, featuring an intuitive visualization interface for ease of deployment and use.
arXiv Detail & Related papers (2024-10-13T08:24:12Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - LLMBox: A Comprehensive Library for Large Language Models [109.15654830320553]
This paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of large language models (LLMs)
This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency.
arXiv Detail & Related papers (2024-07-08T02:39:33Z) - FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models [36.273451767886726]
FreeEval is a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of large language models.
FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies.
The framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules, enhance the fairness of the evaluation outcomes.
arXiv Detail & Related papers (2024-04-09T04:17:51Z) - Evalverse: Unified and Accessible Library for Large Language Model Evaluation [8.49602675597486]
We introduce Evalverse, a novel library that streamlines the evaluation of Large Language Models (LLMs)
Evalverse enables individuals with limited knowledge of artificial intelligence to easily request LLM evaluations and receive detailed reports.
We provide a demo video for Evalverse, showcasing its capabilities and implementation in a two-minute format.
arXiv Detail & Related papers (2024-04-01T06:03:39Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
This paper presents a benchmark self-evolving framework to dynamically evaluate Large Language Models (LLMs)
We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence.
Our framework widens performance discrepancies both between different models and within the same model across various tasks.
arXiv Detail & Related papers (2024-02-18T03:40:06Z) - ReForm-Eval: Evaluating Large Vision Language Models via Unified
Re-Formulation of Task-Oriented Benchmarks [76.25209974199274]
Large vision-language models (LVLMs) exhibit surprising capabilities to perceive visual signals and perform visually grounded reasoning.
Our benchmark and evaluation framework will be open-sourced as a cornerstone for advancing the development of LVLMs.
arXiv Detail & Related papers (2023-10-04T04:07:37Z) - FedScale: Benchmarking Model and System Performance of Federated
Learning [4.1617240682257925]
FedScale is a set of challenging and realistic benchmark datasets for federated learning (FL) research.
FedScale is open-source with permissive licenses and actively maintained.
arXiv Detail & Related papers (2021-05-24T15:55:27Z) - MLModelScope: A Distributed Platform for Model Evaluation and
Benchmarking at Scale [32.62513495487506]
Machine Learning (ML) and Deep Learning (DL) innovations are being introduced at such a rapid pace that researchers are hard-pressed to analyze and study them.
The complicated procedures for evaluating innovations, along with the lack of standard and efficient ways of specifying and provisioning ML/DL evaluation, is a major "pain point" for the community.
This paper proposes MLModelScope, an open-source, framework/ hardware agnostic, and customizable design that enables repeatable, fair, and scalable model evaluation and benchmarking.
arXiv Detail & Related papers (2020-02-19T17:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.