論文の概要: Model-based Cleaning of the QUILT-1M Pathology Dataset for Text-Conditional Image Synthesis
- arxiv url: http://arxiv.org/abs/2404.07676v1
- Date: Thu, 11 Apr 2024 12:14:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:09:30.843831
- Title: Model-based Cleaning of the QUILT-1M Pathology Dataset for Text-Conditional Image Synthesis
- Title(参考訳): テキストコンテンツ画像合成のためのQUILT-1M病理データセットのモデルベースクリーニング
- Authors: Marc Aubreville, Jonathan Ganz, Jonas Ammeling, Christopher C. Kaltenecker, Christof A. Bertram,
- Abstract要約: QUILT-1Mデータセットは、様々なオンラインソースから取得した画像を含む、初めて公開されたデータセットである。
画像中の最も一般的な不純物を予測する自動パイプラインを提案する。
その結果,テキスト・ツー・イメージ・タスクにおいて,データセットを厳格にフィルタリングすることにより,画像の忠実度が大幅に向上することが示唆された。
- 参考スコア(独自算出の注目度): 0.33554367023486936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The QUILT-1M dataset is the first openly available dataset containing images harvested from various online sources. While it provides a huge data variety, the image quality and composition is highly heterogeneous, impacting its utility for text-conditional image synthesis. We propose an automatic pipeline that provides predictions of the most common impurities within the images, e.g., visibility of narrators, desktop environment and pathology software, or text within the image. Additionally, we propose to use semantic alignment filtering of the image-text pairs. Our findings demonstrate that by rigorously filtering the dataset, there is a substantial enhancement of image fidelity in text-to-image tasks.
- Abstract(参考訳): QUILT-1Mデータセットは、様々なオンラインソースから取得した画像を含む、初めて公開されたデータセットである。
膨大なデータ量を提供するが、画像の品質と構成は極めて均一であり、テキスト条件による画像合成に影響を及ぼす。
本稿では,イメージ内の最も一般的な不純物,ナレーターの視認性,デスクトップ環境と病理ソフトウェア,あるいは画像内のテキストを予測する自動パイプラインを提案する。
さらに,画像とテキストのペアのセマンティックアライメントのフィルタリングも提案する。
その結果,テキスト・ツー・イメージ・タスクにおいて,データセットを厳格にフィルタリングすることにより,画像の忠実度が大幅に向上することが示唆された。
関連論文リスト
- Learning Vision from Models Rivals Learning Vision from Data [54.43596959598465]
合成画像と合成キャプションのみから視覚表現を学習するための新しいアプローチであるSynCLRを紹介する。
LLMを用いて画像キャプションの大規模なデータセットを合成し,既製のテキスト・ツー・イメージモデルを用いて合成キャプションに対応する複数の画像を生成する。
比較学習によって合成画像の視覚的表現学習を行い、同じ字幕を共有するイメージを正のペアとして扱う。
論文 参考訳(メタデータ) (2023-12-28T18:59:55Z) - Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning [13.357749288588039]
以前の作業では、教師なし設定下でのテキスト情報のみに依存して、画像キャプションのためのCLIPのクロスモーダルアソシエーション機能を活用していた。
本稿では,合成画像とテキストのペアを組み込むことにより,これらの問題に対処する新しい手法を提案する。
テキストデータに対応する画像を得るために、事前訓練されたテキスト・ツー・イメージモデルが配置され、CLIP埋め込み空間の実際の画像に対して、生成された画像の擬似特徴を最適化する。
論文 参考訳(メタデータ) (2023-12-14T12:39:29Z) - Filter & Align: Leveraging Human Knowledge to Curate Image-Text Data [31.507451966555383]
本稿では、画像テキストアライメントに関する人間の知識を取り入れた新しいアルゴリズムを提案する。
さまざまなソースからの複数のキャプションに各画像が関連付けられている多様な画像テキストデータセットを収集する。
我々は、画像テキストアライメントに関する人間の微妙な理解を内在化するために、これらの人間の参照アノテーションに対する報酬モデルを訓練する。
論文 参考訳(メタデータ) (2023-12-11T05:57:09Z) - Beyond Generation: Harnessing Text to Image Models for Object Detection
and Segmentation [29.274362919954218]
精度の高いラベル付きトレーニングデータを自動的に生成する新しいパラダイムを提案する。
提案手法は、トレーニングデータ生成を前景オブジェクト生成とコンテキスト的に一貫性のある背景生成に分離する。
5つのオブジェクト検出とセグメンテーションデータセットに対するアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-09-12T04:41:45Z) - Improving Multimodal Datasets with Image Captioning [65.74736570293622]
生成したキャプションが非記述テキストによるWebスクラッピングデータポイントの有用性を高める方法について検討する。
DataComp の大規模字幕 (1.28B 画像テキストペア) を用いた実験により,合成テキストの限界について考察した。
論文 参考訳(メタデータ) (2023-07-19T17:47:12Z) - Text-based Person Search without Parallel Image-Text Data [52.63433741872629]
テキストベースの人物探索(TBPS)は,対象者の画像を与えられた自然言語記述に基づいて大きな画像ギャラリーから検索することを目的としている。
既存の手法は、並列画像テキストペアによるトレーニングモデルによって支配されており、収集には非常にコストがかかる。
本稿では,並列画像テキストデータなしでTBPSを探索する試みについて述べる。
論文 参考訳(メタデータ) (2023-05-22T12:13:08Z) - OptGAN: Optimizing and Interpreting the Latent Space of the Conditional
Text-to-Image GANs [8.26410341981427]
生成したサンプルが信頼でき、現実的、あるいは自然であることを保証する方法について研究する。
本稿では,条件付きテキスト・ツー・イメージGANアーキテクチャの潜在空間における意味論的理解可能な方向を識別するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-25T20:00:33Z) - DAE-GAN: Dynamic Aspect-aware GAN for Text-to-Image Synthesis [55.788772366325105]
本研究では,文レベル,単語レベル,アスペクトレベルを含む複数の粒度からテキスト情報を包括的に表現する動的アスペクト・アワーン(DAE-GAN)を提案する。
人間の学習行動にインスパイアされた画像改善のためのADR(Aspect-aware Dynamic Re-drawer)を開発し,AGR(Attended Global Refinement)モジュールとALR(Aspect-aware Local Refinement)モジュールを交互に使用する。
論文 参考訳(メタデータ) (2021-08-27T07:20:34Z) - Cycle-Consistent Inverse GAN for Text-to-Image Synthesis [101.97397967958722]
本稿では,テキスト・ツー・イメージ・ジェネレーションとテキスト・ガイドによる画像操作を行うために,Cycle-Consistent Inverse GANの統一フレームワークを提案する。
我々は、GANの反転モデルを学び、画像をGANの潜在空間に変換し、各画像の反転潜在符号を得る。
テキスト誘導最適化モジュールでは、反転潜在符号を最適化することにより、所望のセマンティック属性を持つ画像を生成する。
論文 参考訳(メタデータ) (2021-08-03T08:38:16Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGANはマルチモーダル画像生成とテキスト記述による操作のためのフレームワークである。
StyleGANインバージョンモジュールは、よく訓練されたStyleGANの潜在空間に実際の画像をマッピングする。
視覚言語的類似性は、画像とテキストを共通の埋め込み空間にマッピングすることで、テキスト画像マッチングを学ぶ。
インスタンスレベルの最適化は、操作におけるID保存のためのものだ。
論文 参考訳(メタデータ) (2020-12-06T16:20:19Z) - Using Text to Teach Image Retrieval [47.72498265721957]
ニューラルネットワークを用いて学習した画像の特徴空間をグラフとして表現するために,画像多様体の概念に基づいて構築する。
我々は、幾何学的に整列したテキストで多様体のサンプルを増補し、大量の文を使って画像について教える。
実験結果から, 結合埋め込み多様体は頑健な表現であり, 画像検索を行うためのより良い基礎となることが示唆された。
論文 参考訳(メタデータ) (2020-11-19T16:09:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。