論文の概要: Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking
- arxiv url: http://arxiv.org/abs/2404.07687v1
- Date: Thu, 11 Apr 2024 12:26:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:09:30.823310
- Title: Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking
- Title(参考訳): 運動のカオス:脳誘発皮膚追跡による遠隔心拍計測におけるロバスト性
- Authors: Jie Wang, Jing Lian, Minjie Ma, Junqiang Lei, Chunbiao Li, Bin Li, Jizhao Liu,
- Abstract要約: 既存の遠隔心拍測定法には3つの深刻な問題がある。
コンピュータビジョンタスクにカオス理論を初めて適用し、脳にインスパイアされたフレームワークとなる。
本手法はHR-RSTと呼ばれる心拍計測のためのロバスト皮膚追跡を実現する。
- 参考スコア(独自算出の注目度): 7.688280190165613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart rate is an important physiological indicator of human health status. Existing remote heart rate measurement methods typically involve facial detection followed by signal extraction from the region of interest (ROI). These SOTA methods have three serious problems: (a) inaccuracies even failures in detection caused by environmental influences or subject movement; (b) failures for special patients such as infants and burn victims; (c) privacy leakage issues resulting from collecting face video. To address these issues, we regard the remote heart rate measurement as the process of analyzing the spatiotemporal characteristics of the optical flow signal in the video. We apply chaos theory to computer vision tasks for the first time, thus designing a brain-inspired framework. Firstly, using an artificial primary visual cortex model to extract the skin in the videos, and then calculate heart rate by time-frequency analysis on all pixels. Our method achieves Robust Skin Tracking for Heart Rate measurement, called HR-RST. The experimental results show that HR-RST overcomes the difficulty of environmental influences and effectively tracks the subject movement. Moreover, the method could extend to other body parts. Consequently, the method can be applied to special patients and effectively protect individual privacy, offering an innovative solution.
- Abstract(参考訳): 心拍数は人間の健康状態を示す重要な生理的指標である。
既存の遠隔心拍測定法では、顔検出と、関心領域(ROI)からの信号抽出が一般的である。
これらのSOTA法には3つの重大な問題がある。
(a)環境影響又は被写体運動による検出の失敗さえも不正確なもの
b) 乳幼児や火傷者等の特殊患者に対する障害
(c)フェイスビデオの収集によるプライバシー漏洩問題
これらの問題に対処するため、遠隔心拍測定は、ビデオ中の光流信号の時空間特性を分析する過程であると考えている。
コンピュータビジョンタスクにカオス理論を初めて適用し、脳に触発されたフレームワークを設計する。
まず、人工一次視覚野モデルを用いてビデオ中の皮膚を抽出し、すべてのピクセルの時間周波数分析によって心拍数を計算する。
本手法はHR-RSTと呼ばれる心拍計測のためのロバスト皮膚追跡を実現する。
実験の結果,HR-RSTは環境影響の難しさを克服し,被験者の動きを効果的に追跡することがわかった。
さらに、この方法は他の身体部位にも拡張できる。
これにより、特殊な患者に適用し、個人のプライバシーを効果的に保護し、革新的な解決策を提供することができる。
関連論文リスト
- AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation [55.179287851188036]
人間のポーズと形状の復元のための新しいオールインワンステージフレームワークであるAiOSを、追加の人間検出ステップなしで導入する。
まず、画像中の人間の位置を探索し、各インスタンスのグローバルな機能をエンコードするために、人間のトークンを使用します。
そして、画像中の人間の関節を探索し、きめ細かい局所的特徴を符号化するジョイント関連トークンを導入する。
論文 参考訳(メタデータ) (2024-03-26T17:59:23Z) - Continuous 3D Myocardial Motion Tracking via Echocardiography [30.19879953016694]
心筋運動追跡は、心臓血管疾患の予防と検出に不可欠な臨床ツールである。
現在の技術は、空間次元と時間次元の両方において、心筋の不完全かつ不正確な運動推定に悩まされている。
本稿では, 心臓の3次元構造と包括的6次元前/後方運動をモデル化するためのニューラル心運動場(ニューラルCMF)について紹介する。
論文 参考訳(メタデータ) (2023-10-04T13:11:20Z) - Dataset Creation Pipeline for Camera-Based Heart Rate Estimation [0.3058685580689604]
心拍数(Heart rate)は、様々な人間の生理的、心理的情報に対する直感を調査し得る最も重要な健康指標の1つである。
従来の画像処理から複雑なディープラーニングモデルやアーキテクチャまで,様々なカメラベース心拍推定技術が開発されている。
本稿では,顔領域の画像から心拍数推定のためのアルゴリズムや機械学習モデルを開発するためのデータ作成方法について論じる。
論文 参考訳(メタデータ) (2023-03-02T18:28:29Z) - Mesh-based 3D Motion Tracking in Cardiac MRI using Deep Learning [11.177851736773823]
心臓機能評価と心血管疾患の診断には, 心臓磁気共鳴(CMR)画像からの3次元運動推定が重要である。
従来の手法のほとんどは、フルイメージ空間における画素/ボクセルの運動場の推定に重点を置いていた。
本研究では、心臓を3次元幾何メッシュとしてモデル化し、2次元短軸CMR画像から心臓メッシュの3次元運動を推定できる新しいディープラーニングベースの手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T15:10:27Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - A Supervised Learning Approach for Robust Health Monitoring using Face
Videos [32.157163136267954]
非接触型非接触型人体検知法は、特殊な心臓および血圧モニタリング装置の必要性をなくすことができる。
本稿では,市販のウェブカメラで撮影する顔ビデオのみを必要とする非接触方式を用いた。
提案手法では,顔のランドマークを用いて映像の各フレームの顔を検出する。
論文 参考訳(メタデータ) (2021-01-30T22:03:16Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - MOMBAT: Heart Rate Monitoring from Face Video using Pulse Modeling and
Bayesian Tracking [10.43230025523549]
顔画像に基づく新しい人事監視手法MOMBATを提案する。
平面外の顔の動きを利用して、新しい品質推定機構を定義する。
ベイズ決定理論に基づくHR追跡機構を設計し、突発的なHR推定を補正する。
論文 参考訳(メタデータ) (2020-05-10T09:41:16Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
既存のエンド・ツー・エンドのネットワークが難易度が低い理由を考察し,アーキテクチャ・サーチ(NAS)を用いたリモートHR計測のための強力なベースラインを確立する。
総合的な実験は、時間内テストとクロスデータセットテストの両方で3つのベンチマークデータセットで実施される。
論文 参考訳(メタデータ) (2020-04-26T05:43:21Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。