論文の概要: Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification
- arxiv url: http://arxiv.org/abs/2404.07754v1
- Date: Thu, 11 Apr 2024 14:00:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 13:50:01.925907
- Title: Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification
- Title(参考訳): 深層学習型テキスト・ツー・イメージモデルによる合成衛星画像の生成 -モニタリングと検証の技術的課題と意義-
- Authors: Tuong Vy Nguyen, Alexander Glaser, Felix Biessmann,
- Abstract要約: コンディショニング機構を用いて合成衛星画像の作成方法について検討する。
評価結果は,信頼性と最先端の指標に基づいて評価する。
本稿では,衛星画像の監視と検証の文脈における意義について論じる。
- 参考スコア(独自算出の注目度): 46.42328086160106
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Novel deep-learning (DL) architectures have reached a level where they can generate digital media, including photorealistic images, that are difficult to distinguish from real data. These technologies have already been used to generate training data for Machine Learning (ML) models, and large text-to-image models like DALL-E 2, Imagen, and Stable Diffusion are achieving remarkable results in realistic high-resolution image generation. Given these developments, issues of data authentication in monitoring and verification deserve a careful and systematic analysis: How realistic are synthetic images? How easily can they be generated? How useful are they for ML researchers, and what is their potential for Open Science? In this work, we use novel DL models to explore how synthetic satellite images can be created using conditioning mechanisms. We investigate the challenges of synthetic satellite image generation and evaluate the results based on authenticity and state-of-the-art metrics. Furthermore, we investigate how synthetic data can alleviate the lack of data in the context of ML methods for remote-sensing. Finally we discuss implications of synthetic satellite imagery in the context of monitoring and verification.
- Abstract(参考訳): 新たなディープラーニング(DL)アーキテクチャは、実際のデータと区別が難しいフォトリアリスティック画像を含むデジタルメディアを生成できるレベルに達している。
これらの技術は機械学習(ML)モデルのトレーニングデータを生成するためにすでに使われており、DALL-E、Imagen、Stable Diffusionといった大規模なテキスト・ツー・イメージモデルでは、現実的な高解像度画像生成において顕著な結果が得られている。
これらの発展を考えると、監視と検証におけるデータ認証の問題は慎重で体系的な分析に値する。
生成はどの程度容易か?
ML研究者にとって、どのように役立つのか。
本研究では、新しいDLモデルを用いて、コンディショニング機構を用いて合成衛星画像を作成する方法について検討する。
本研究では, 合成衛星画像生成の課題について検討し, 信頼性と最先端測定値に基づく評価を行った。
さらに, 遠隔センシングにおけるML手法の文脈におけるデータ不足を, 合成データによって緩和する方法について検討した。
最後に、監視・検証の文脈における合成衛星画像の影響について論じる。
関連論文リスト
- Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Harnessing Machine Learning for Discerning AI-Generated Synthetic Images [2.6227376966885476]
我々は、AI生成画像と実画像の識別に機械学習技術を用いる。
ResNet、VGGNet、DenseNetといった先進的なディープラーニングアーキテクチャを洗練し、適応しています。
実験結果は重要であり、最適化されたディープラーニングモデルが従来の手法より優れていることを示した。
論文 参考訳(メタデータ) (2024-01-14T20:00:37Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
本稿では,コンピュータビジョンによるAI生成画像の認識能力を高めることを提案する。
写真が本物かAIによって生成されるかに関して、バイナリ分類問題として存在する2つのデータセット。
本研究では,畳み込みニューラルネットワーク(CNN)を用いて画像をリアルとフェイクの2つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-03-24T16:33:06Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Synthetic Data for Model Selection [2.4499092754102874]
合成データはモデル選択に有用であることを示す。
そこで本研究では,実領域に適合する合成誤差推定をキャリブレーションする新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-03T09:52:03Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z) - Can Synthetic Data Improve Object Detection Results for Remote Sensing
Images? [15.466412729455874]
本稿では,リモートセンシング画像航空機検出の性能向上のために,広域分布のリアルな合成データの利用を提案する。
レンダリング中に、インスタンスのサイズや背景画像のクラスなど、パラメータをランダムに設定します。
合成画像をよりリアルにするために,CycleGANと実際の未ラベル画像を用いて,画素レベルで合成画像を洗練する。
論文 参考訳(メタデータ) (2020-06-09T02:23:22Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
本稿では,任意の解像度の高品質な画像を生成するための新しいシミュレーション手法を提案する。
この方法では、フル長のミッション中に収集したソナースキャンと同等の大きさのソナースキャンを合成することができる。
生成されたデータは、連続的で、現実的に見え、また、取得の実際の速度の少なくとも2倍の速さで生成される。
論文 参考訳(メタデータ) (2020-03-02T17:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。