Post-Hoc Reversal: Are We Selecting Models Prematurely?
- URL: http://arxiv.org/abs/2404.07815v2
- Date: Fri, 04 Oct 2024 00:11:05 GMT
- Title: Post-Hoc Reversal: Are We Selecting Models Prematurely?
- Authors: Rishabh Ranjan, Saurabh Garg, Mrigank Raman, Carlos Guestrin, Zachary Lipton,
- Abstract summary: We show a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying post-hoc transforms.
Preliminary analyses suggest that these transforms induce reversal by suppressing the influence of mislabeled examples.
We propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions.
- Score: 13.910702424593797
- License:
- Abstract: Trained models are often composed with post-hoc transforms such as temperature scaling (TS), ensembling and stochastic weight averaging (SWA) to improve performance, robustness, uncertainty estimation, etc. However, such transforms are typically applied only after the base models have already been finalized by standard means. In this paper, we challenge this practice with an extensive empirical study. In particular, we demonstrate a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying post-hoc transforms. This phenomenon is especially prominent in high-noise settings. For example, while base models overfit badly early in training, both ensembling and SWA favor base models trained for more epochs. Post-hoc reversal can also prevent the appearance of double descent and mitigate mismatches between test loss and test error seen in base models. Preliminary analyses suggest that these transforms induce reversal by suppressing the influence of mislabeled examples, exploiting differences in their learning dynamics from those of clean examples. Based on our findings, we propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions such as early stopping, checkpointing, and broader hyperparameter choices. Our experiments span real-world vision, language, tabular and graph datasets. On an LLM instruction tuning dataset, post-hoc selection results in >1.5x MMLU improvement compared to naive selection.
Related papers
- Reducing Bias in Pre-trained Models by Tuning while Penalizing Change [8.862970622361747]
Deep models trained on large amounts of data often incorporate implicit biases present during training time.
New data is often expensive and hard to come by in areas such as autonomous driving or medical decision-making.
We present a method based on change penalization that takes a pre-trained model and adapts the weights to mitigate a previously detected bias.
arXiv Detail & Related papers (2024-04-18T16:12:38Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model.
Here, the underlying assumption is that the biased model resorts to shortcut features.
We introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts loss function.
arXiv Detail & Related papers (2023-02-06T15:21:41Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Mitigating Catastrophic Forgetting in Scheduled Sampling with Elastic
Weight Consolidation in Neural Machine Translation [15.581515781839656]
Autoregressive models trained with maximum likelihood estimation suffer from exposure bias.
We propose using Elastic Weight Consolidation as trade-off between mitigating exposure bias and retaining output quality.
Experiments on two IWSLT'14 translation tasks demonstrate that our approach alleviates catastrophic forgetting and significantly improves BLEU.
arXiv Detail & Related papers (2021-09-13T20:37:58Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
In RNNs, encoding information in a suboptimal way can impact the quality of representations based on later elements in the sequence.
I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism.
I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail.
arXiv Detail & Related papers (2021-01-03T17:54:17Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
In image classification, sample-wise inconsistencies appear as "negative flips"
A new model incorrectly predicts the output for a test sample that was correctly classified by the old (reference) model.
We propose a simple approach for PC training, Focal Distillation, which enforces congruence with the reference model.
arXiv Detail & Related papers (2020-11-18T09:00:44Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.