Reducing Bias in Pre-trained Models by Tuning while Penalizing Change
- URL: http://arxiv.org/abs/2404.12292v1
- Date: Thu, 18 Apr 2024 16:12:38 GMT
- Title: Reducing Bias in Pre-trained Models by Tuning while Penalizing Change
- Authors: Niklas Penzel, Gideon Stein, Joachim Denzler,
- Abstract summary: Deep models trained on large amounts of data often incorporate implicit biases present during training time.
New data is often expensive and hard to come by in areas such as autonomous driving or medical decision-making.
We present a method based on change penalization that takes a pre-trained model and adapts the weights to mitigate a previously detected bias.
- Score: 8.862970622361747
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep models trained on large amounts of data often incorporate implicit biases present during training time. If later such a bias is discovered during inference or deployment, it is often necessary to acquire new data and retrain the model. This behavior is especially problematic in critical areas such as autonomous driving or medical decision-making. In these scenarios, new data is often expensive and hard to come by. In this work, we present a method based on change penalization that takes a pre-trained model and adapts the weights to mitigate a previously detected bias. We achieve this by tuning a zero-initialized copy of a frozen pre-trained network. Our method needs very few, in extreme cases only a single, examples that contradict the bias to increase performance. Additionally, we propose an early stopping criterion to modify baselines and reduce overfitting. We evaluate our approach on a well-known bias in skin lesion classification and three other datasets from the domain shift literature. We find that our approach works especially well with very few images. Simple fine-tuning combined with our early stopping also leads to performance benefits for a larger number of tuning samples.
Related papers
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
Deep neural networks trained on biased data often inadvertently learn unintended inference rules.
We introduce a novel approach to address bias directly in the model's parameter space, preventing its propagation across layers.
We show enhanced classification accuracy and debiasing effectiveness across various synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-19T13:06:40Z) - ReFine: Boosting Time Series Prediction of Extreme Events by Reweighting and Fine-tuning [0.0]
Extreme events are of great importance since they represent impactive occurrences.
accurately predicting these extreme events is challenging due to their rarity and irregularity.
We propose two strategies, reweighting and fine-tuning, to tackle the challenge.
arXiv Detail & Related papers (2024-09-21T19:29:29Z) - Ask Your Distribution Shift if Pre-Training is Right for You [74.18516460467019]
In practice, fine-tuning a pre-trained model improves robustness significantly in some cases but not at all in others.
We focus on two possible failure modes of models under distribution shift: poor extrapolation and biases in the training data.
Our study suggests that, as a rule of thumb, pre-training can help mitigate poor extrapolation but not dataset biases.
arXiv Detail & Related papers (2024-02-29T23:46:28Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
Ensembles of DNNs [9.010643838773477]
We introduce a novel score for quantifying overfit, which monitors the forgetting rate of deep models on validation data.
We show that overfit can occur with and without a decrease in validation accuracy, and may be more common than previously appreciated.
We use our observations to construct a new ensemble method, based solely on the training history of a single network, which provides significant improvement without any additional cost in training time.
arXiv Detail & Related papers (2023-10-17T09:22:22Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - Language Models Get a Gender Makeover: Mitigating Gender Bias with
Few-Shot Data Interventions [50.67412723291881]
Societal biases present in pre-trained large language models are a critical issue.
We propose data intervention strategies as a powerful yet simple technique to reduce gender bias in pre-trained models.
arXiv Detail & Related papers (2023-06-07T16:50:03Z) - Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases [62.54519787811138]
We present a simple but effective method to measure and mitigate model biases caused by reliance on spurious cues.
We rank images within their classes based on spuriosity, proxied via deep neural features of an interpretable network.
Our results suggest that model bias due to spurious feature reliance is influenced far more by what the model is trained on than how it is trained.
arXiv Detail & Related papers (2022-12-05T23:15:43Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
Existing techniques for mitigating dataset bias often leverage a biased model to identify biased instances.
The role of these biased instances is then reduced during the training of the main model to enhance its robustness to out-of-distribution data.
In this paper, we show that this assumption does not hold in general.
arXiv Detail & Related papers (2021-09-01T10:25:46Z) - When does loss-based prioritization fail? [18.982933391138268]
We show that loss-based acceleration methods degrade in scenarios with noisy and corrupted data.
Measures of example difficulty need to correctly separate out noise from other types of challenging examples.
arXiv Detail & Related papers (2021-07-16T07:23:15Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.