論文の概要: Context-aware Video Anomaly Detection in Long-Term Datasets
- arxiv url: http://arxiv.org/abs/2404.07887v1
- Date: Thu, 11 Apr 2024 16:17:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 13:20:46.400038
- Title: Context-aware Video Anomaly Detection in Long-Term Datasets
- Title(参考訳): 長期データセットにおける文脈認識ビデオ異常検出
- Authors: Zhengye Yang, Richard Radke,
- Abstract要約: Trinityはコンテキスト対応のビデオ異常検出アルゴリズムである。
これは、コンテキスト、外観、動きのアライメントを学習することを目的としており、アライメント品質を使用して、動画を正常または異常に分類する。
我々は,従来のベンチマークと公開Webカメラベースのデータセットの両方でアルゴリズムを評価した。
- 参考スコア(独自算出の注目度): 0.09208007322096534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection research is generally evaluated on short, isolated benchmark videos only a few minutes long. However, in real-world environments, security cameras observe the same scene for months or years at a time, and the notion of anomalous behavior critically depends on context, such as the time of day, day of week, or schedule of events. Here, we propose a context-aware video anomaly detection algorithm, Trinity, specifically targeted to these scenarios. Trinity is especially well-suited to crowded scenes in which individuals cannot be easily tracked, and anomalies are due to speed, direction, or absence of group motion. Trinity is a contrastive learning framework that aims to learn alignments between context, appearance, and motion, and uses alignment quality to classify videos as normal or anomalous. We evaluate our algorithm on both conventional benchmarks and a public webcam-based dataset we collected that spans more than three months of activity.
- Abstract(参考訳): ビデオ異常検出の研究は通常、短い、孤立したベンチマークビデオで数分で評価される。
しかし、現実の環境では、セキュリティカメラは同じ場面を何ヶ月、何年にもわたって観察し、異常な振る舞いの概念は、日時、曜日、イベントのスケジュールといった文脈に大きく依存する。
本稿では,これらのシナリオに特化して,コンテキスト対応のビデオ異常検出アルゴリズムであるTrinityを提案する。
トリニティは、個人が簡単に追跡できない混雑したシーンに特に適しており、異常はグループの動きの速度、方向、欠如によるものである。
Trinityは、コンテクスト、外観、動きのアライメントを学習することを目的とした、対照的な学習フレームワークである。
従来のベンチマークと3ヶ月以上にわたって収集した公開Webカメラベースのデータセットの両方でアルゴリズムを評価した。
関連論文リスト
- Temporal Divide-and-Conquer Anomaly Actions Localization in Semi-Supervised Videos with Hierarchical Transformer [0.9208007322096532]
異常な行動の検出と位置決めは、セキュリティと高度な監視システムにおいて重要な役割を果たす。
本稿では,異常ビデオにおける観察行動の重要性を評価するために,階層型トランスフォーマーモデルを提案する。
本手法は, 親映像を階層的に複数の時間的児童事例に区分し, 親映像の異常の分類における子ノードの影響を計測する。
論文 参考訳(メタデータ) (2024-08-24T18:12:58Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - Delving into CLIP latent space for Video Anomaly Recognition [24.37974279994544]
本稿では,CLIP などの大規模言語と視覚(LLV)モデルを組み合わせた新しい手法 AnomalyCLIP を提案する。
当社のアプローチでは、通常のイベントサブスペースを特定するために、潜伏するCLIP機能空間を操作することが特に必要です。
異常フレームがこれらの方向に投影されると、それらが特定のクラスに属している場合、大きな特徴量を示す。
論文 参考訳(メタデータ) (2023-10-04T14:01:55Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
ビデオ異常検出(VAD)はその潜在的な応用により注目されている。
Video Anomaly Retrieval (VAR)は、関連のある動画をモダリティによって実用的に検索することを目的としている。
一般的な異常データセットの上に構築されたUCFCrime-ARとXD-Violenceの2つのベンチマークを示す。
論文 参考訳(メタデータ) (2023-07-24T06:22:37Z) - A New Comprehensive Benchmark for Semi-supervised Video Anomaly
Detection and Anticipation [46.687762316415096]
我々は,43のシーン,28の異常イベント,16時間の動画を含む新しい包括的データセットNWPU Campusを提案する。
このデータセットは、最大数のシーンとクラスの異常、最長持続時間、シーン依存の異常を考慮に入れた唯一の部分を持つ、最も大きな半教師付きVADデータセットである。
本稿では,異常事象を同時に検出・予測できる新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-05-23T02:20:12Z) - Approaches Toward Physical and General Video Anomaly Detection [0.0]
ビデオにおける異常検出は、多くの製造、保守、実生活環境における誤動作の自動検出を可能にする。
6つの異なるビデオクラスを含む物理異常軌道(Physal Anomalous Trajectory)データセットを紹介する。
我々は、高度に可変なシーンで異常なアクティビティを発見すべきという、さらに難しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-12-14T18:57:44Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
本稿では,複数の仮想シーンで構成された教師付きオープンセット・ベンチマークを提案する。
既存のデータセットとは異なり、トレーニング時に画素レベルでアノテートされた異常事象を導入する。
UBnormalは最先端の異常検出フレームワークの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-16T17:28:46Z) - Anomaly Detection in Video Sequences: A Benchmark and Computational
Model [25.25968958782081]
本稿では,ビデオシーケンスにおける異常検出のベンチマークとして,新しい大規模異常検出(LAD)データベースを提案する。
通常のビデオクリップや異常なビデオクリップを含む2000の動画シーケンスが含まれており、クラッシュ、火災、暴力など14の異常なカテゴリーがある。
ビデオレベルラベル(異常/正常ビデオ、異常タイプ)やフレームレベルラベル(異常/正常ビデオフレーム)を含むアノテーションデータを提供し、異常検出を容易にする。
完全教師付き学習問題として異常検出を解くために,マルチタスク深層ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:34:38Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。