論文の概要: LLoCO: Learning Long Contexts Offline
- arxiv url: http://arxiv.org/abs/2404.07979v1
- Date: Thu, 11 Apr 2024 17:57:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 12:49:46.954675
- Title: LLoCO: Learning Long Contexts Offline
- Title(参考訳): LLoCO: 長いコンテキストをオフラインで学ぶ
- Authors: Sijun Tan, Xiuyu Li, Shishir Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E. Gonzalez, Raluca Ada Popa,
- Abstract要約: LLoCOは,LoRAを用いた文脈圧縮,検索,パラメータ効率の微調整を組み合わせた手法である。
我々は,LLoCOの長文質問応答データセットに対するアプローチを検証し,LLoCOが文脈内学習を著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 63.3458260335454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using $30\times$ fewer tokens during inference. LLoCO achieves up to $7.62\times$ speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.
- Abstract(参考訳): 長期のコンテキストを処理することは、自己アテンション機構の2次計算とメモリオーバーヘッドと、生成時の相当なKVキャッシュサイズのために、大きな言語モデル(LLM)にとって依然として課題である。
本稿では、コンテキスト圧縮とドメイン内パラメータ効率の微調整を通じてオフラインでコンテキストを学習することで、この問題に対処する新しい手法を提案する。
提案手法は,LLMが元の文脈の簡潔な表現を作成し,関連情報を効率よく検索し,質問に正確に答えることを可能にする。
LLoCOは、文脈圧縮、検索、LoRAを用いたパラメータ効率の微調整を組み合わせた手法である。
提案手法は、4kトークンLLaMA2-7Bモデルの有効コンテキストウインドウを拡張し,最大128kトークンを処理する。
我々は,LLoCOの長文質問応答データセットに対するアプローチを評価し,LLoCOが推論中に30\times$より少ないトークンを使用しながら,文脈内学習を著しく上回ることを示した。
LLoCOは最大7.62\times$スピードアップを達成し、長い文書質問応答のコストを大幅に削減し、効率的な長期コンテキスト処理のための有望なソリューションである。
私たちのコードはhttps://github.com/jeffreysijuntan/lloco.comで公開されています。
関連論文リスト
- LongRecipe: Recipe for Efficient Long Context Generalization in Large Language Models [72.71150585370147]
LongRecipeは、大きな言語モデルのコンテキストウィンドウを拡張するための効率的なトレーニング戦略である。
トレーニング効率を維持しながら、長いシーケンス入力をシミュレートし、長距離依存に対するモデルの理解を大幅に改善する。
LongRecipeは、ターゲットのコンテキストウィンドウサイズの30%しか必要とせず、長いシーケンスを使うことができる。
論文 参考訳(メタデータ) (2024-08-31T17:19:30Z) - QUITO: Accelerating Long-Context Reasoning through Query-Guided Context Compression [37.08536175557748]
本稿では,新しいQuery-gUIded aTtention cOmpression (QUITO)法を提案する。
具体的には,質問に対する文脈の注意分布を計算するためにトリガートークンを用いる。
本研究では,2つの広く利用されているデータセットであるNaturalQuestionsとASQAを用いてQUITOを評価する。
論文 参考訳(メタデータ) (2024-08-01T04:28:38Z) - $\infty$Bench: Extending Long Context Evaluation Beyond 100K Tokens [64.08660301017302]
現在、この長期コンテキスト機能を評価するための標準ベンチマークが欠落している。
$infty$Benchは、平均データ長が100Kを超える最初のベンチマークである。
その結果,100K以上のコンテキストを効果的に処理するには,既存の長期的LLMの大幅な進歩が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:30:29Z) - Compressing Context to Enhance Inference Efficiency of Large Language
Models [26.75216730927996]
本稿では,大規模言語モデル(LLM)の推論効率を向上させるための選択文脈法を提案する。
我々は、arXiv論文、ニュース記事、長い会話など、長いコンテキスト処理を必要とする共通のデータソースを用いて、アプローチをテストする。
実験の結果,Selective Contextはメモリコストを大幅に削減し,生成遅延を低減させることがわかった。
論文 参考訳(メタデータ) (2023-10-09T23:03:24Z) - Retrieval meets Long Context Large Language Models [59.431200671427064]
大規模言語モデル(LLM)のコンテキストウィンドウの拡張が最近人気を集めている。
Retrieval-augmentation対ロングコンテキストウィンドウ。
両方の方法を組み合わせることで、両方の世界を最大限に活用できますか?
我々の最良モデルである32Kコンテキストウィンドウ付きLlama2-70Bは、9つの長いコンテキストタスクの平均スコアにおいて、GPT-3.5-turbo-16kとDavinci003より優れています。
論文 参考訳(メタデータ) (2023-10-04T17:59:41Z) - LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models [67.58275666573496]
LongLoRAは、トレーニング済みの大規模言語モデルのコンテキストサイズを拡張する、効率的な微調整アプローチである。
7B/13Bから70BまでのLlama2モデル上での各種タスクに対する実験結果が強かった。
論文 参考訳(メタデータ) (2023-09-21T17:59:11Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
In-context Autoencoder (ICAE) を提案し、長いコンテキストを短いメモリスロットに圧縮する。
ICAEは、大量のテキストデータに基づく自動符号化と言語モデリングの両方の目的を用いて、まず事前訓練を行う。
論文 参考訳(メタデータ) (2023-07-13T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。