ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback
- URL: http://arxiv.org/abs/2404.07987v4
- Date: Tue, 19 Nov 2024 03:23:20 GMT
- Title: ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback
- Authors: Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, Chen Chen,
- Abstract summary: ControlNet++ is a novel approach that improves controllable generation by explicitly optimizing pixel-level cycle consistency between generated images and conditional controls.
It achieves improvements over ControlNet by 11.1% mIoU, 13.4% SSIM, and 7.6% RMSE, respectively, for segmentation mask, line-art edge, and depth conditions.
- Score: 20.910939141948123
- License:
- Abstract: To enhance the controllability of text-to-image diffusion models, existing efforts like ControlNet incorporated image-based conditional controls. In this paper, we reveal that existing methods still face significant challenges in generating images that align with the image conditional controls. To this end, we propose ControlNet++, a novel approach that improves controllable generation by explicitly optimizing pixel-level cycle consistency between generated images and conditional controls. Specifically, for an input conditional control, we use a pre-trained discriminative reward model to extract the corresponding condition of the generated images, and then optimize the consistency loss between the input conditional control and extracted condition. A straightforward implementation would be generating images from random noises and then calculating the consistency loss, but such an approach requires storing gradients for multiple sampling timesteps, leading to considerable time and memory costs. To address this, we introduce an efficient reward strategy that deliberately disturbs the input images by adding noise, and then uses the single-step denoised images for reward fine-tuning. This avoids the extensive costs associated with image sampling, allowing for more efficient reward fine-tuning. Extensive experiments show that ControlNet++ significantly improves controllability under various conditional controls. For example, it achieves improvements over ControlNet by 11.1% mIoU, 13.4% SSIM, and 7.6% RMSE, respectively, for segmentation mask, line-art edge, and depth conditions. All the code, models, demo and organized data have been open sourced on our Github Repo.
Related papers
- CtrLoRA: An Extensible and Efficient Framework for Controllable Image Generation [69.43106794519193]
We propose the CtrLoRA framework, which trains a Base ControlNet to learn the common knowledge of image-to-image generation from multiple base conditions.
Our framework reduces the learnable parameters by 90% compared to ControlNet, significantly lowering the threshold to distribute and deploy the model weights.
arXiv Detail & Related papers (2024-10-12T07:04:32Z) - ControlAR: Controllable Image Generation with Autoregressive Models [40.74890550081335]
We introduce ControlAR, an efficient framework for integrating spatial controls into autoregressive image generation models.
ControlAR exploits the conditional decoding method to generate the next image token conditioned on the per-token fusion between control and image tokens.
Results indicate that ControlAR surpasses previous state-of-the-art controllable diffusion models.
arXiv Detail & Related papers (2024-10-03T17:28:07Z) - ControlVAR: Exploring Controllable Visual Autoregressive Modeling [48.66209303617063]
Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs)
Challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs.
This paper introduces Controlmore, a novel framework that explores pixel-level controls in visual autoregressive modeling for flexible and efficient conditional generation.
arXiv Detail & Related papers (2024-06-14T06:35:33Z) - OmniControlNet: Dual-stage Integration for Conditional Image Generation [61.1432268643639]
We provide a two-way integration for the widely adopted ControlNet by integrating external condition generation algorithms into a single dense prediction method.
Our proposed OmniControlNet consolidates 1) the condition generation by a single multi-tasking dense prediction algorithm under the task embedding guidance and 2) the image generation process for different conditioning types under the textual embedding guidance.
arXiv Detail & Related papers (2024-06-09T18:03:47Z) - ECNet: Effective Controllable Text-to-Image Diffusion Models [31.21525123716149]
We introduce two innovative solutions for conditional text-to-image models.
Firstly, we propose a Spatial Guidance (SGI) which enhances conditional detail by encoding text inputs with precise annotation information.
Secondly, to overcome the issue of limited conditional supervision, we introduce Diffusion Consistency Loss.
This encourages consistency between the latent code at each time step and the input signal, thereby enhancing the robustness and accuracy of the output.
arXiv Detail & Related papers (2024-03-27T10:09:38Z) - Layout-to-Image Generation with Localized Descriptions using ControlNet
with Cross-Attention Control [20.533597112330018]
We show the limitations of ControlNet for the layout-to-image task and enable it to use localized descriptions.
We develop a novel cross-attention manipulation method in order to maintain image quality while improving control.
arXiv Detail & Related papers (2024-02-20T22:15:13Z) - CCM: Adding Conditional Controls to Text-to-Image Consistency Models [89.75377958996305]
We consider alternative strategies for adding ControlNet-like conditional control to Consistency Models.
A lightweight adapter can be jointly optimized under multiple conditions through Consistency Training.
We study these three solutions across various conditional controls, including edge, depth, human pose, low-resolution image and masked image.
arXiv Detail & Related papers (2023-12-12T04:16:03Z) - ControlNet-XS: Rethinking the Control of Text-to-Image Diffusion Models as Feedback-Control Systems [19.02295657801464]
In this work, we take an existing controlling network (ControlNet) and change the communication between the controlling network and the generation process to be of high-frequency and with large-bandwidth.
We outperform state-of-the-art approaches for pixel-level guidance, such as depth, canny-edges, and semantic segmentation, and are on a par for loose keypoint-guidance of human poses.
All code and pre-trained models will be made publicly available.
arXiv Detail & Related papers (2023-12-11T17:58:06Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
We propose fine-grained controllable video generation (FACTOR) to achieve detailed control.
FACTOR aims to control objects' appearances and context, including their location and category.
Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users.
arXiv Detail & Related papers (2023-12-05T17:47:33Z) - Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image
Generation [79.8881514424969]
Text-conditional diffusion models are able to generate high-fidelity images with diverse contents.
However, linguistic representations frequently exhibit ambiguous descriptions of the envisioned objective imagery.
We propose Cocktail, a pipeline to mix various modalities into one embedding.
arXiv Detail & Related papers (2023-06-01T17:55:32Z) - Adding Conditional Control to Text-to-Image Diffusion Models [37.98427255384245]
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models.
ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls.
arXiv Detail & Related papers (2023-02-10T23:12:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.