論文の概要: GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2404.08004v1
- Date: Tue, 9 Apr 2024 05:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:54:09.372713
- Title: GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction
- Title(参考訳): GRANP: 車両軌道予測のためのグラフリカレント注意ニューラルプロセスモデル
- Authors: Yuhao Luo, Kehua Chen, Meixin Zhu,
- Abstract要約: 車両軌道予測のためのGRANP(Graph Recurrent Attentive Neural Process)という新しいモデルを提案する。
GRANPには、決定論的パスと遅延パスを持つエンコーダと、予測のためのデコーダが含まれている。
我々は,GRANPが最先端の結果を達成し,不確実性を効率的に定量化できることを示す。
- 参考スコア(独自算出の注目度): 3.031375888004876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a vital component in autonomous driving, accurate trajectory prediction effectively prevents traffic accidents and improves driving efficiency. To capture complex spatial-temporal dynamics and social interactions, recent studies developed models based on advanced deep-learning methods. On the other hand, recent studies have explored the use of deep generative models to further account for trajectory uncertainties. However, the current approaches demonstrating indeterminacy involve inefficient and time-consuming practices such as sampling from trained models. To fill this gap, we proposed a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction while efficiently quantifying prediction uncertainty. In particular, GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction. The encoder, including stacked Graph Attention Networks, LSTM and 1D convolutional layers, is employed to extract spatial-temporal relationships. The decoder is used to learn a latent distribution and thus quantify prediction uncertainty. To reveal the effectiveness of our model, we evaluate the performance of GRANP on the highD dataset. Extensive experiments show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties. Additionally, we undertake an intuitive case study that showcases the interpretability of the proposed approach. The code is available at https://github.com/joy-driven/GRANP.
- Abstract(参考訳): 自動運転において重要な要素として、正確な軌道予測は交通事故を効果的に防止し、運転効率を向上させる。
複雑な空間的・時間的ダイナミクスと社会的相互作用を捉えるため、最近の研究では高度な深層学習法に基づくモデルを開発した。
一方、近年の研究では、軌跡の不確実性をさらに考慮するために、深部生成モデルの利用について検討されている。
しかしながら、非決定性を示す現在のアプローチは、訓練されたモデルからのサンプリングのような非効率で時間を要するプラクティスである。
このギャップを埋めるため,予測の不確実性を効率的に定量化しつつ,車両軌道予測のためのGRANP(Graph Recurrent Attentive Neural Process)と呼ばれる新しいモデルを提案した。
特に、GRANPは決定論的パスと遅延パスを持つエンコーダと、予測のためのデコーダを含んでいる。
重ねられたグラフアテンションネットワーク、LSTM、および1次元畳み込み層を含むエンコーダを用いて、空間的時間的関係を抽出する。
デコーダは潜伏分布を学習し、予測の不確実性を定量化する。
本モデルの有効性を明らかにするため,高次元データセット上でのGRANPの性能評価を行った。
大規模な実験により、GRANPは最先端の結果を達成し、不確実性を効果的に定量化できることが示されている。
さらに,提案手法の解釈可能性を示す直感的なケーススタディも実施する。
コードはhttps://github.com/joy-driven/GRANP.comで公開されている。
関連論文リスト
- Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
本稿では,データ駆動学習に基づく手法と,自然に着想を得た概念から生成された速度ベクトル場(VVF)を組み合わせた軌道予測手法を提案する。
精度は、正確な軌道予測のための過去の観測の長い歴史の要求を緩和する観測窓の減少と一致している。
論文 参考訳(メタデータ) (2023-09-19T22:14:52Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
本研究では,将来の車両軌道予測のための深部生成モデルであるEquiDiffを提案する。
EquiDiffは、過去の情報とランダムなガウスノイズを組み込んで将来の軌跡を生成する条件拡散モデルに基づいている。
以上の結果から,EquiDiffは短期予測では他のベースラインモデルよりも優れているが,長期予測では誤差が若干高いことがわかった。
論文 参考訳(メタデータ) (2023-08-12T13:17:09Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - DeepTrack: Lightweight Deep Learning for Vehicle Path Prediction in
Highways [0.47248250311484113]
本稿では、高速道路におけるリアルタイム車両軌道予測用にカスタマイズされた新しいディープラーニングアルゴリズムであるDeepTrackについて述べる。
DeepTrackは最先端の軌道予測モデルに匹敵する精度を達成しているが、モデルのサイズは小さく、計算量も少ない。
論文 参考訳(メタデータ) (2021-08-01T17:33:04Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。