Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition
- URL: http://arxiv.org/abs/2404.08008v2
- Date: Thu, 29 May 2025 13:16:05 GMT
- Title: Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition
- Authors: Kehua Feng, Keyan Ding, Hongzhi Tan, Kede Ma, Zhihua Wang, Shuangquan Guo, Yuzhou Cheng, Ge Sun, Guozhou Zheng, Qiang Zhang, Huajun Chen,
- Abstract summary: We propose a sample-efficient human evaluation method for large language models (LLMs)<n>Our method automatically and adaptively selects a compact set of input instructions that maximize semantic discrepancy between pairs of LLM responses.<n>Human evaluators then perform three-alternative forced choices on these paired responses, which are aggregated into a global ranking using Elo rating.
- Score: 38.822535662755314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable evaluation of large language models (LLMs) is impeded by two key challenges: objective metrics often fail to reflect human perception of natural language, and exhaustive human labeling is prohibitively expensive. Here, we propose a sample-efficient human evaluation method for LLMs based on the principle of MAximum Discrepancy (MAD) Competition. Our method automatically and adaptively selects a compact set of input instructions that maximize semantic discrepancy between pairs of LLM responses. Human evaluators then perform three-alternative forced choices on these paired responses, which are aggregated into a global ranking using Elo rating. We apply our approach to compare eight widely used LLMs across four tasks: scientific knowledge understanding, mathematical reasoning, creative and functional writing, and code generation and explanation. Experimental results show that our sample-efficient evaluation method recovers "gold-standard" model rankings with a handful of MAD-selected instructions, reveals respective strengths and weaknesses of each LLM, and offers nuanced insights to guide future LLM development. Code is available at https://github.com/weiji-Feng/MAD-Eval .
Related papers
- Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications [0.0]
Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations.
Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation.
We propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications.
arXiv Detail & Related papers (2025-04-01T09:36:56Z) - Can LLMs Replace Human Evaluators? An Empirical Study of LLM-as-a-Judge in Software Engineering [18.766132076075365]
Large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation.<n>Pass@k metric requires extensive unit tests and configured environments, and is not suitable for evaluating LLM-generated text.<n>Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny.
arXiv Detail & Related papers (2025-02-10T06:49:29Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - Decoding Biases: Automated Methods and LLM Judges for Gender Bias Detection in Language Models [47.545382591646565]
Large Language Models (LLMs) have excelled at language understanding and generating human-level text.
LLMs are susceptible to adversarial attacks where malicious users prompt the model to generate undesirable text.
In this work, we train models to automatically create adversarial prompts to elicit biased responses from target LLMs.
arXiv Detail & Related papers (2024-08-07T17:11:34Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
Multimodal large language models (MLLMs) have broadened the scope of AI applications.
Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences.
We propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge.
arXiv Detail & Related papers (2023-11-23T12:04:25Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
This study investigates the behavior of crowd-sourced and expert annotators, as well as large language models (LLMs)
Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors.
We propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score.
arXiv Detail & Related papers (2023-07-06T14:42:01Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
We investigate the stability and reliability of large language models (LLMs) as automatic evaluators for abstractive summarization.
We find that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements.
arXiv Detail & Related papers (2023-05-22T14:58:13Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
This paper introduces GAOKAO-Bench, an intuitive benchmark that employs questions from the Chinese GAOKAO examination as test samples.
With human evaluation, we obtain the converted total score of LLMs, including GPT-4, ChatGPT and ERNIE-Bot.
We also use LLMs to grade the subjective questions, and find that model scores achieve a moderate level of consistency with human scores.
arXiv Detail & Related papers (2023-05-21T14:39:28Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
Large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided.
We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation.
arXiv Detail & Related papers (2023-05-03T07:28:50Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.