論文の概要: Exponentially Weighted Moving Models
- arxiv url: http://arxiv.org/abs/2404.08136v2
- Date: Wed, 24 Apr 2024 17:38:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:28:54.242128
- Title: Exponentially Weighted Moving Models
- Title(参考訳): 指数重み付き移動モデル
- Authors: Eric Luxenberg, Stephen Boyd,
- Abstract要約: ベクトル時系列に対する指数重み付き移動モデル(EWMM)は、時間毎に新しいデータモデルに適合する。
固定された過去のサンプルのウィンドウだけを格納する必要があるEWMMの近似を計算するための一般的な方法を提案する。
近似から得られた推定値と正確なEWMM法による推定値を比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An exponentially weighted moving model (EWMM) for a vector time series fits a new data model each time period, based on an exponentially fading loss function on past observed data. The well known and widely used exponentially weighted moving average (EWMA) is a special case that estimates the mean using a square loss function. For quadratic loss functions EWMMs can be fit using a simple recursion that updates the parameters of a quadratic function. For other loss functions, the entire past history must be stored, and the fitting problem grows in size as time increases. We propose a general method for computing an approximation of EWMM, which requires storing only a window of a fixed number of past samples, and uses an additional quadratic term to approximate the loss associated with the data before the window. This approximate EWMM relies on convex optimization, and solves problems that do not grow with time. We compare the estimates produced by our approximation with the estimates from the exact EWMM method.
- Abstract(参考訳): ベクトル時系列に対する指数重み付き移動モデル(EWMM)は、過去の観測データに対する指数重み付き損失関数に基づいて、時間毎に新しいデータモデルに適合する。
指数重み付き移動平均(EWMA)は、平方損失関数を用いて平均を推定する特殊なケースである。
二次損失関数に対して、EWMMは2次関数のパラメータを更新する単純な再帰を用いて適合することができる。
他の損失関数の場合、過去の履歴全体が保存されなければならない。
本稿では,過去のサンプルの固定数のウィンドウのみを格納するEWMMの近似計算法を提案する。
この近似EWMMは凸最適化に依存し、時間とともに成長しない問題を解く。
近似から得られた推定値と正確なEWMM法による推定値を比較する。
関連論文リスト
- Decreasing the Computing Time of Bayesian Optimization using
Generalizable Memory Pruning [56.334116591082896]
本稿では,任意のサロゲートモデルと取得関数で使用可能なメモリプルーニングとバウンダリ最適化のラッパーを示す。
BOを高次元または大規模データセット上で実行することは、この時間の複雑さのために難解になる。
すべてのモデル実装はMIT Supercloudの最先端コンピューティングハードウェア上で実行される。
論文 参考訳(メタデータ) (2023-09-08T14:05:56Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - Transformers meet Stochastic Block Models: Attention with Data-Adaptive
Sparsity and Cost [53.746169882193456]
最近の研究は、自己注意の二次的コストを克服するために、様々なスパークアテンションモジュールを提案している。
本稿では,それぞれの注意を混合メンバーシップブロックモデルで表現することで,両方の問題を解決するモデルを提案する。
我々のモデルは、以前の効率的な変種とオリジナルのトランスフォーマーより優れており、十分に注目されています。
論文 参考訳(メタデータ) (2022-10-27T15:30:52Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z) - Model-based multi-parameter mapping [0.0]
定量的MRイメージングは、よりリッチな情報の内容と標準化された測定基準のためにますます好まれている。
推定はしばしば、異なる量のデータを分離して解くために、データのノイズサブセットを仮定する。
代わりに、生成モデルは定式化され、パラメータ推定を共同で回復するために反転することができる。
論文 参考訳(メタデータ) (2021-02-02T17:00:11Z) - Time-series Imputation and Prediction with Bi-Directional Generative
Adversarial Networks [0.3162999570707049]
本稿では,不規則に観測された時系列データと不規則なエントリを含む長さの時系列データの計算と予測を併用したタスクのモデルを提案する。
我々のモデルは、入力時間ステップ(予測)の内側または外側の欠落した要素をインプットする方法を学び、したがって、時系列データに有効な任意の時間予測ツールとして機能する。
論文 参考訳(メタデータ) (2020-09-18T15:47:51Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - Query Training: Learning a Worse Model to Infer Better Marginals in
Undirected Graphical Models with Hidden Variables [11.985433487639403]
確率的グラフィカルモデル(PGM)は、柔軟な方法でクエリできる知識のコンパクトな表現を提供する。
我々は,PGMを学習するメカニズムであるクエリトレーニング(QT)を導入し,それと組み合わせる近似推論アルゴリズムに最適化する。
実験により,QTを用いて隠れ変数を持つ8連結グリッドマルコフランダム場を学習できることが実証された。
論文 参考訳(メタデータ) (2020-06-11T20:34:32Z) - Scalable Hybrid HMM with Gaussian Process Emission for Sequential
Time-series Data Clustering [13.845932997326571]
隠れマルコフモデル(HMM)とガウス過程(GP)のエミッションを組み合わせることで、隠れた状態を効率的に推定することができる。
本稿では,HMM-GPSMのためのスケーラブルな学習法を提案する。
論文 参考訳(メタデータ) (2020-01-07T07:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。