論文の概要: Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
- arxiv url: http://arxiv.org/abs/2404.08197v2
- Date: Tue, 16 Apr 2024 01:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 11:52:13.129153
- Title: Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
- Title(参考訳): スケール(ダウン)CLIP: データ、アーキテクチャ、トレーニング戦略の総合的な分析
- Authors: Zichao Li, Cihang Xie, Ekin Dogus Cubuk,
- Abstract要約: 本稿では,CLIP(Contrastive Language-Image Pre-Training)の性能を,限られた計算予算にスケールダウンする際の性能について検討する。
高品質なデータのより小さなデータセットは、より低い品質のデータセットよりも優れていることを示す。
SLIP、FLIP、CLIP、CLIP+Data Augmentationという4つのCLIPトレーニング戦略を比較し、トレーニング戦略の選択が利用可能な計算リソースに依存することを示す。
- 参考スコア(独自算出の注目度): 27.809995478990544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the performance of the Contrastive Language-Image Pre-training (CLIP) when scaled down to limited computation budgets. We explore CLIP along three dimensions: data, architecture, and training strategies. With regards to data, we demonstrate the significance of high-quality training data and show that a smaller dataset of high-quality data can outperform a larger dataset with lower quality. We also examine how model performance varies with different dataset sizes, suggesting that smaller ViT models are better suited for smaller datasets, while larger models perform better on larger datasets with fixed compute. Additionally, we provide guidance on when to choose a CNN-based architecture or a ViT-based architecture for CLIP training. We compare four CLIP training strategies - SLIP, FLIP, CLIP, and CLIP+Data Augmentation - and show that the choice of training strategy depends on the available compute resource. Our analysis reveals that CLIP+Data Augmentation can achieve comparable performance to CLIP using only half of the training data. This work provides practical insights into how to effectively train and deploy CLIP models, making them more accessible and affordable for practical use in various applications.
- Abstract(参考訳): 本稿では,CLIP(Contrastive Language-Image Pre-Training)の性能を,限られた計算予算にスケールダウンする際の性能について検討する。
データ、アーキテクチャ、トレーニング戦略の3つの側面に沿ってCLIPを調査します。
データに関して、高品質なトレーニングデータの重要性を示し、高品質なデータのデータセットがより少ない品質のデータセットよりも優れていることを示す。
また、モデルの性能がデータセットのサイズによってどう変化するかについても検討し、より小さなViTモデルはより小さなデータセットに適しており、大きなモデルはより大きなデータセットで、固定された計算でより良く動作することを示唆している。
さらに、CLIPトレーニングのためのCNNベースのアーキテクチャやVTベースのアーキテクチャを選択するタイミングに関するガイダンスも提供する。
SLIP、FLIP、CLIP、CLIP+Data Augmentationという4つのCLIPトレーニング戦略を比較し、トレーニング戦略の選択が利用可能な計算リソースに依存することを示す。
私たちの分析によると、CLIP+Data Augmentationはトレーニングデータの半分しか使用せず、CLIPに匹敵するパフォーマンスを実現することができる。
この作業は、CLIPモデルを効果的にトレーニングし、デプロイする方法に関する実践的な洞察を提供する。
関連論文リスト
- TabDPT: Scaling Tabular Foundation Models [20.00390825519329]
実データによる性能向上と一般化の方法を示す。
本モデルでは,CC18(分類)およびCTR23(回帰)ベンチマークの最先端性能を実現する。
TabDPTはまた、モデルのサイズと利用可能なデータの量の両方が増加するにつれて、強力なスケーリングを示す。
論文 参考訳(メタデータ) (2024-10-23T18:00:00Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources [45.40926501138365]
我々は、高度な合成最適化技術に基づいて構築された一般的なCLIPトレーニングフレームワークであるFastCLIPを紹介する。
我々のフレームワークは、通信オーバーヘッドを低減するための効率的な勾配低減戦略を備えている。
我々は、FastCLIPと最先端のトレーニングベースラインのパフォーマンスを、異なる計算スケールでベンチマークする。
論文 参考訳(メタデータ) (2024-07-01T16:37:18Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Effective pruning of web-scale datasets based on complexity of concept
clusters [48.125618324485195]
本稿では,大規模なマルチモーダルデータセットを抽出し,イメージネット上でCLIPスタイルのモデルを訓練する手法を提案する。
高品質なデータのより小さなセットでのトレーニングは、トレーニングコストを大幅に削減して、より高いパフォーマンスをもたらす可能性があることに気付きました。
我々は38の評価タスクにおいて、新しい最先端のImagehttps://info.arxiv.org/help/prep#commentsネットゼロショット精度と競合平均ゼロショット精度を実現する。
論文 参考訳(メタデータ) (2024-01-09T14:32:24Z) - Demystifying CLIP Data [86.34045746910114]
Contrastive Language-Image Pre-Training (CLIP) はコンピュータビジョンの先進的な研究と応用を行っている。
メタデータ変換言語画像事前学習(MetaCLIP)について紹介する。
MetaCLIPは生のデータプールとメタデータ(CLIPの概念から派生したもの)を取り、メタデータの分布に対してバランスの取れたサブセットを生成する。
論文 参考訳(メタデータ) (2023-09-28T17:59:56Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIPは、既存のCLIPモデルの性能を高めるための費用対効果戦略である。
我々の方法では、既存のモデルのトレーニングパイプラインと懸命に統合できます。
包括的なベンチマークでは、HELIPはパフォーマンス向上のために既存のモデルを継続的に強化する。
論文 参考訳(メタデータ) (2023-05-09T07:00:17Z) - DataComp: In search of the next generation of multimodal datasets [179.79323076587255]
DataCompは、Common Crawlの128億の画像テキストペアの候補プールを中心にしたデータセット実験用のテストベッドである。
我々のベンチマークは、複数の計算スケールから成っている。
特に、最良のベースラインであるDataComp-1Bは、ImageNetでCLIP ViT-L/14をスクラッチから79.2%のゼロショット精度でトレーニングすることが可能です。
論文 参考訳(メタデータ) (2023-04-27T11:37:18Z) - Quality Not Quantity: On the Interaction between Dataset Design and
Robustness of CLIP [43.7219097444333]
ここでは,CLIPにおける事前学習分布がロバスト性をいかに引き起こすかを調べるために,公開されている6つのデータソースのテストベッドを紹介する。
その結果,事前学習データの性能は分布変化によって大きく異なることがわかった。
複数のソースを組み合わせることで、必ずしもより良いモデルが得られるのではなく、最高の個々のデータソースのロバスト性を希薄にする。
論文 参考訳(メタデータ) (2022-08-10T18:24:23Z) - Democratizing Contrastive Language-Image Pre-training: A CLIP Benchmark
of Data, Model, and Supervision [26.13829720290035]
Contrastive Language-Image Pretraining (CLIP) は、言語監督から視覚モデルを学ぶための新しいパラダイムとして登場した。
私たちはCLIPとその変異体を評価し、分析し、ベンチマークする最初の試みであるCLIP-benchmarkを提案する。
論文 参考訳(メタデータ) (2022-03-11T08:41:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。