Minimax Optimal Goodness-of-Fit Testing with Kernel Stein Discrepancy
- URL: http://arxiv.org/abs/2404.08278v3
- Date: Wed, 22 Jan 2025 21:59:43 GMT
- Title: Minimax Optimal Goodness-of-Fit Testing with Kernel Stein Discrepancy
- Authors: Omar Hagrass, Bharath Sriperumbudur, Krishnakumar Balasubramanian,
- Abstract summary: We explore the minimax optimality of goodness-of-fit tests on general domains using the kernelized Stein discrepancy (KSD)
KSD is a powerful framework for goodness-of-fit testing, but its statistical optimality remains largely unexplored.
We introduce an adaptive test capable of achieving minimax optimality up to a logarithmic factor by adapting to unknown parameters.
- Score: 13.429541377715298
- License:
- Abstract: We explore the minimax optimality of goodness-of-fit tests on general domains using the kernelized Stein discrepancy (KSD). The KSD framework offers a flexible approach for goodness-of-fit testing, avoiding strong distributional assumptions, accommodating diverse data structures beyond Euclidean spaces, and relying only on partial knowledge of the reference distribution, while maintaining computational efficiency. Although KSD is a powerful framework for goodness-of-fit testing, only the consistency of the corresponding tests has been established so far, and their statistical optimality remains largely unexplored. In this paper, we develop a general framework and an operator-theoretic representation of the KSD, encompassing many existing KSD tests in the literature, which vary depending on the domain. Building on this representation, we propose a modified discrepancy by applying the concept of spectral regularization to the KSD framework. We establish the minimax optimality of the proposed regularized test for a wide range of the smoothness parameter $\theta$ under a specific alternative space, defined over general domains, using the $\chi^2$-divergence as the separation metric. In contrast, we demonstrate that the unregularized KSD test fails to achieve the minimax separation rate for the considered alternative space. Additionally, we introduce an adaptive test capable of achieving minimax optimality up to a logarithmic factor by adapting to unknown parameters. Through numerical experiments, we illustrate the superior performance of our proposed tests across various domains compared to their unregularized counterparts.
Related papers
- A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) aims to classify both base and novel images using labeled base data.
Current approaches inadequately address the intrinsic optimization of the co-occurrence matrix $barA$ based on cosine similarity.
We propose a Non-Negative Generalized Category Discovery (NN-GCD) framework to address these deficiencies.
arXiv Detail & Related papers (2024-10-29T07:24:11Z) - Robust Kernel Hypothesis Testing under Data Corruption [6.430258446597413]
We propose two general methods for constructing robust permutation tests under data corruption.
We prove their consistency in power under minimal conditions.
This contributes to the practical deployment of hypothesis tests for real-world applications with potential adversarial attacks.
arXiv Detail & Related papers (2024-05-30T10:23:16Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
We show the popular MMD (maximum mean discrepancy) two-sample test to be not optimal in terms of the separation boundary measured in Hellinger distance.
We propose a modification to the MMD test based on spectral regularization and prove the proposed test to be minimax optimal with a smaller separation boundary than that achieved by the MMD test.
Our results hold for the permutation variant of the test where the test threshold is chosen elegantly through the permutation of the samples.
arXiv Detail & Related papers (2022-12-19T00:42:21Z) - Controlling Moments with Kernel Stein Discrepancies [74.82363458321939]
Kernel Stein discrepancies (KSDs) measure the quality of a distributional approximation.
We first show that standard KSDs used for weak convergence control fail to control moment convergence.
We then provide sufficient conditions under which alternative diffusion KSDs control both moment and weak convergence.
arXiv Detail & Related papers (2022-11-10T08:24:52Z) - A kernel Stein test of goodness of fit for sequential models [19.8408003104988]
The proposed measure is an instance of the kernel Stein discrepancy (KSD), which has been used to construct goodness-of-fit tests for unnormalized densities.
We extend the KSD to the variable-dimension setting by identifying appropriate Stein operators, and propose a novel KSD goodness-of-fit test.
Our test is shown to perform well in practice on discrete sequential data benchmarks.
arXiv Detail & Related papers (2022-10-19T17:30:15Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or (ii) control weak convergence to P.
In this article we derive new sufficient and necessary conditions to ensure (i) and (ii)
For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels.
arXiv Detail & Related papers (2022-09-26T16:41:16Z) - A Fourier representation of kernel Stein discrepancy with application to
Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces [6.437931786032493]
Kernel Stein discrepancy (KSD) is a kernel-based measure of discrepancy between probability measures.
We provide the first analysis of KSD in the generality of data lying in a separable Hilbert space.
This allows us to prove that KSD can separate measures and thus is valid to use in practice.
arXiv Detail & Related papers (2022-06-09T15:04:18Z) - Generalised Kernel Stein Discrepancy(GKSD): A Unifying Approach for
Non-parametric Goodness-of-fit Testing [5.885020100736158]
Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions.
We propose a unifying framework, the generalised kernel Stein discrepancy (GKSD), to theoretically compare and interpret different Stein operators in performing the KSD-based goodness-of-fit tests.
arXiv Detail & Related papers (2021-06-23T00:44:31Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
This paper theoretically derives a unified form of JMMD that is easy to optimize.
From the revealed unified JMMD, we illustrate that JMMD degrades the feature-label dependence that benefits to classification.
We propose a novel MMD matrix to promote the dependence, and devise a novel label kernel that is robust to label distribution shift.
arXiv Detail & Related papers (2021-01-25T09:46:14Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - A Kernel Stein Test for Comparing Latent Variable Models [48.32146056855925]
We propose a kernel-based nonparametric test of relative goodness of fit, where the goal is to compare two models, both of which may have unobserved latent variables.
We show that our test significantly outperforms the relative Maximum Mean Discrepancy test, which is based on samples from the models and does not exploit the latent structure.
arXiv Detail & Related papers (2019-07-01T07:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.