AdaContour: Adaptive Contour Descriptor with Hierarchical Representation
- URL: http://arxiv.org/abs/2404.08292v1
- Date: Fri, 12 Apr 2024 07:30:24 GMT
- Title: AdaContour: Adaptive Contour Descriptor with Hierarchical Representation
- Authors: Tianyu Ding, Jinxin Zhou, Tianyi Chen, Zhihui Zhu, Ilya Zharkov, Luming Liang,
- Abstract summary: Existing angle-based contour descriptors suffer from lossy representation for non-star shapes.
AdaCon is able to represent shapes more accurately robustly than other descriptors.
- Score: 52.381359663689004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing angle-based contour descriptors suffer from lossy representation for non-starconvex shapes. By and large, this is the result of the shape being registered with a single global inner center and a set of radii corresponding to a polar coordinate parameterization. In this paper, we propose AdaContour, an adaptive contour descriptor that uses multiple local representations to desirably characterize complex shapes. After hierarchically encoding object shapes in a training set and constructing a contour matrix of all subdivided regions, we compute a robust low-rank robust subspace and approximate each local contour by linearly combining the shared basis vectors to represent an object. Experiments show that AdaContour is able to represent shapes more accurately and robustly than other descriptors while retaining effectiveness. We validate AdaContour by integrating it into off-the-shelf detectors to enable instance segmentation which demonstrates faithful performance. The code is available at https://github.com/tding1/AdaContour.
Related papers
- Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps [8.679251532993428]
We propose a normative model for spatial representation in the hippocampal formation.
We show that the model achieves normative desiderata including superlinear scaling of patterns with dimension.
More generally, the model formalizes how compositional computations could occur in the hippocampal formation.
arXiv Detail & Related papers (2024-06-27T00:53:53Z) - Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform [62.27337227010514]
We introduce a novel self-supervised Rotation-Invariant 3D correspondence learner with Local Shape Transform, dubbed RIST.
RIST learns to establish dense correspondences between shapes even under challenging intra-class variations and arbitrary orientations.
RIST demonstrates state-of-the-art performances on 3D part label transfer and semantic keypoint transfer given arbitrarily rotated point cloud pairs.
arXiv Detail & Related papers (2024-04-17T08:09:25Z) - ShapeMatcher: Self-Supervised Joint Shape Canonicalization,
Segmentation, Retrieval and Deformation [47.94499636697971]
We present ShapeMatcher, a unified self-supervised learning framework for joint shape canonicalization, segmentation, retrieval and deformation.
The key insight of ShapeMaker is the simultaneous training of the four highly-associated processes: canonicalization, segmentation, retrieval, and deformation.
arXiv Detail & Related papers (2023-11-18T15:44:57Z) - A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D
Shape Matching [69.14632473279651]
We present a scalable algorithm for globally optimizing over the space of geometrically consistent mappings between 3D shapes.
We propose a novel primal coupled with a Lagrange dual problem that is several orders of magnitudes faster than previous solvers.
arXiv Detail & Related papers (2022-04-27T09:47:47Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape
Representations [75.42959184226702]
We present a new mid-level patch-based surface representation for object-agnostic training.
We show several applications of our new representation, including shape and partial point cloud completion.
arXiv Detail & Related papers (2020-08-04T15:34:46Z) - ProAlignNet : Unsupervised Learning for Progressively Aligning Noisy
Contours [12.791313859673187]
"ProAlignNet" accounts for large scale misalignments and complex transformations between the contour shapes.
It learns by training with a novel loss function which is derived an upperbound of a proximity-sensitive and local shape-dependent similarity metric.
In two real-world applications, the proposed models consistently perform superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-05-23T14:56:14Z) - Unsupervised Learning of Intrinsic Structural Representation Points [50.92621061405056]
Learning structures of 3D shapes is a fundamental problem in the field of computer graphics and geometry processing.
We present a simple yet interpretable unsupervised method for learning a new structural representation in the form of 3D structure points.
arXiv Detail & Related papers (2020-03-03T17:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.