Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network
- URL: http://arxiv.org/abs/2404.08298v1
- Date: Fri, 12 Apr 2024 07:41:17 GMT
- Title: Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network
- Authors: Mikolaj Czerkawski, Christos Ilioudis, Carmine Clemente, Craig Michie, Ivan Andonovic, Christos Tachtatzis,
- Abstract summary: A novel approach to the removal of interference through the use of a probabilistic deep learning model is presented.
Results show that a convolutional encoder-decoder neural network with a variational objective is capable of learning a meaningful representation space of vital sign Doppler-time distribution.
- Score: 1.099532646524593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the interference to extract the vital sign contributions is demanding due to overlapping Doppler bands, the complex structure of the interference motions and significant variations in the power levels of their contributions. A novel approach to the removal of interference through the use of a probabilistic deep learning model is presented. Results show that a convolutional encoder-decoder neural network with a variational objective is capable of learning a meaningful representation space of vital sign Doppler-time distribution facilitating their extraction from a mixture signal. The approach is tested on semi-experimental data containing real vital sign signatures and simulated returns from interfering body motions. The application of the proposed network enhances the extraction of the micro-Doppler frequency corresponding to the respiration rate is demonstrated.
Related papers
- Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks [3.6270672925388263]
A trained attention-based transformer network can robustly recover the complex topologies given by the Richtmyer-Meshkoff instability.
This approach is demonstrated on ICF-like double shell hydrodynamic simulations.
arXiv Detail & Related papers (2024-08-02T03:02:39Z) - On Input Formats for Radar Micro-Doppler Signature Processing by Convolutional Neural Networks [1.2499537119440245]
The utility of the phase information, as well as the optimal format of the Doppler-time input for a convolutional neural network is analysed.
It is found that the performance achieved by convolutional neural network classifiers is heavily influenced by the type of input representation.
arXiv Detail & Related papers (2024-04-12T07:30:08Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
We propose a novel deep-learning based technique that automatically recognizes intra-pulse modulation types of radar signals.
We show that the proposed FF-CNN technique outperforms the current state-of-the-art alternatives.
arXiv Detail & Related papers (2022-05-19T20:18:17Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - MDPose: Human Skeletal Motion Reconstruction Using WiFi Micro-Doppler
Signatures [4.92674421365689]
We propose MDPose, a novel framework for human skeletal motion reconstruction based on WiFi micro-Doppler signatures.
It provides an effective solution to track human activities by reconstructing a skeleton model with 17 key points.
MDPose outperforms state-of-the-art RF-based pose estimation systems.
arXiv Detail & Related papers (2022-01-11T21:46:28Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
This paper explores the use of ambient radio frequency (RF) signals for human presence detection through deep learning.
Using WiFi signal as an example, we demonstrate that the channel state information (CSI) obtained at the receiver contains rich information about the propagation environment.
A convolutional neural network (CNN) properly trained with both magnitude and phase information is then designed to achieve reliable presence detection.
arXiv Detail & Related papers (2020-02-13T20:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.