論文の概要: Automatic Speech Recognition Advancements for Indigenous Languages of the Americas
- arxiv url: http://arxiv.org/abs/2404.08368v3
- Date: Sat, 21 Sep 2024 19:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:14:34.005245
- Title: Automatic Speech Recognition Advancements for Indigenous Languages of the Americas
- Title(参考訳): アメリカ先住民言語における音声認識の高度化
- Authors: Monica Romero, Sandra Gomez, Ivan G. Torre,
- Abstract要約: The Second Americas (Americas Natural Language Processing) Competition Track 1 of NeurIPS (Neural Information Processing Systems) 2022年、Cechua、Guarani、Brbri、Kotiria、Wa'ikhanaの5つの先住民言語の自動音声認識システムの訓練タスクを提案した。
対象言語毎の最先端のASRモデルの微調整について,データ拡張法に富んだ多種多様な情報源からの音声データの約36.65時間を用いて述べる。
私たちは各言語で最高のモデルをリリースし、Wa'ikhanaとKotiriaの最初のオープンなASRモデルをマークしています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities in America. The Second AmericasNLP (Americas Natural Language Processing) Competition Track 1 of NeurIPS (Neural Information Processing Systems) 2022 proposed the task of training automatic speech recognition (ASR) systems for five Indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we describe the fine-tuning of a state-of-the-art ASR model for each target language, using approximately 36.65 h of transcribed speech data from diverse sources enriched with data augmentation methods. We systematically investigate, using a Bayesian search, the impact of the different hyperparameters on the Wav2vec2.0 XLS-R (Cross-Lingual Speech Representations) variants of 300 M and 1 B parameters. Our findings indicate that data and detailed hyperparameter tuning significantly affect ASR accuracy, but language complexity determines the final result. The Quechua model achieved the lowest character error rate (CER) (12.14), while the Kotiria model, despite having the most extensive dataset during the fine-tuning phase, showed the highest CER (36.59). Conversely, with the smallest dataset, the Guarani model achieved a CER of 15.59, while Bribri and Wa'ikhana obtained, respectively, CERs of 34.70 and 35.23. Additionally, Sobol' sensitivity analysis highlighted the crucial roles of freeze fine-tuning updates and dropout rates. We release our best models for each language, marking the first open ASR models for Wa'ikhana and Kotiria. This work opens avenues for future research to advance ASR techniques in preserving minority Indigenous languages
- Abstract(参考訳): 先住民族言語は、アメリカの地域社会のユニークなアイデンティティと文化を具現化した、人間のコミュニケーションの発展における基本的遺産である。
The Second AmericasNLP (Americas Natural Language Processing) Competition Track 1 of NeurIPS (Neural Information Processing Systems) 2022年、Cechua、Guarani、Brbri、Kotiria、Wa'ikhanaの5つの先住民言語のための自動音声認識(ASR)システムの訓練タスクを提案した。
本稿では,各対象言語に対する最先端のASRモデルの微調整について,データ拡張法に富んだ多種多様な情報源からの音声データの約36.65hを用いて述べる。
我々はベイズ探索を用いて,300Mと1Bのパラメータの変種Wav2vec2.0 XLS-R(Cross-Lingual Speech Representations)に対する異なるパラメータの影響を系統的に検討した。
以上の結果から,データと詳細なハイパーパラメータチューニングがASRの精度に大きく影響することが示唆された。
ケチュアモデルが最も低い文字誤り率 (CER) (12.14) を達成したのに対し、コティリアモデルは微調整段階で最も広範囲なデータセットを持つにもかかわらず、最も高いCER (36.59) を示した。
逆に、最小のデータセットでは、グアラニモデルは15.59のCERを獲得し、ブリブリとワシカナはそれぞれ34.70と35.23のCERを得た。
さらに、Sobolの感度分析は、微調整更新とドロップアウト率を凍結する重要な役割を強調した。
私たちは各言語で最高のモデルをリリースし、Wa'ikhanaとKotiriaの最初のオープンなASRモデルをマークしています。
この研究は、少数民族言語保存におけるASR技術の発展に向けた今後の研究の道を開く。
関連論文リスト
- Automatic Speech Recognition for the Ika Language [0.0]
IkaのNew Testament Bible Multilingualから収集した高品質な音声データセット上で、事前学習したwav2vec 2.0の大規模翻訳を行う。
この結果から,微調整による事前学習モデルでは単語誤り率(WER)が0.5377,文字誤り率(CER)が0.2651となり,学習時間は1時間を超えることがわかった。
論文 参考訳(メタデータ) (2024-10-01T11:56:42Z) - Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking [68.77659513993507]
我々は,多言語ASRの精度を向上させるため,単純かつ効果的なN-best再分類手法を提案する。
その結果, 音声認識の精度は8.7%, 6.1%, 単語誤り率は3.3%, 単語誤り率は2.0%であった。
論文 参考訳(メタデータ) (2024-09-27T03:31:32Z) - CLAIR-A: Leveraging Large Language Models to Judge Audio Captions [73.51087998971418]
機械生成オーディオキャプションの評価は、様々な要因を検討する必要がある複雑なタスクである。
本稿では,大規模言語モデルのゼロショット機能を活用するシンプルで柔軟なCLAIR-Aを提案する。
我々の評価では、CLAIR-Aは従来のメトリクスと比較して品質の人的判断を良く予測する。
論文 参考訳(メタデータ) (2024-09-19T17:59:52Z) - A Novel Self-training Approach for Low-resource Speech Recognition [15.612232220719653]
低リソース環境における自動音声認識(ASR)のための自己学習手法を提案する。
提案手法は単語誤り率を大幅に改善し,14.94%の相対的な改善を実現した。
提案手法は,Common Voice Punjabiデータセットの最良の結果を報告する。
論文 参考訳(メタデータ) (2023-08-10T01:02:45Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - Effectiveness of Mining Audio and Text Pairs from Public Data for
Improving ASR Systems for Low-Resource Languages [15.214673043019395]
Shrutilipiは、12のインドの言語で6,400時間以上のラベル付きオーディオを含むデータセットです。
平均すると、Shrutilipiは公開ラベル付きデータよりも2.3倍増加する。
We show that that Shrutilipi to the training set of Wav2Vec models to a average down of WER for 7 languages。
論文 参考訳(メタデータ) (2022-08-26T13:37:45Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
低レベルの言語と高レベルの言語のパフォーマンスギャップを狭めるためのデータセットとモデルを作成します。
何千ものタスクをトレーニングしながらオーバーフィッティングに対処するために,複数のアーキテクチャとトレーニングの改善を提案する。
本モデルでは,従来の最先端技術と比較して,BLEUの44%の改善を実現している。
論文 参考訳(メタデータ) (2022-07-11T07:33:36Z) - Scaling ASR Improves Zero and Few Shot Learning [23.896440724468246]
大規模データセットでもっとも有用なサンプルを見つけるために,トレーニングデータを効率的にスケールするためのデータ選択手法を提案する。
1-10Bパラメータのユニバーサル英語ASRモデルを訓練することにより、音声認識性能の限界を多くの領域に広げる。
脳損傷による障害のある話者に対して、私たちの最高のゼロショットモデルと少数ショットモデルは、それぞれAphasiaBankテストセットで22%と60%の相対的な改善を達成しています。
論文 参考訳(メタデータ) (2021-11-10T21:18:59Z) - Arabic Speech Recognition by End-to-End, Modular Systems and Human [56.96327247226586]
我々は、エンドツーエンド変換器ASR、モジュール型HMM-DNN ASR、および人間の音声認識のための包括的なベンチマークを行う。
ASRでは、エンドツーエンドの作業が12.5%、27.5%、23.8%のWERとなり、それぞれMGB2、MGB3、MGB5の新たなパフォーマンスマイルストーンとなった。
以上の結果から,アラビア語における人的パフォーマンスは,平均3.6%のWERギャップを持つ機械に比べて,依然としてかなり優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-01-21T05:55:29Z) - Speech Recognition for Endangered and Extinct Samoyedic languages [0.32228025627337864]
本研究では,絶滅危惧言語と絶滅危惧言語を用いた音声認識実験を行う。
私たちの知る限りでは、絶滅言語のために機能的なASRシステムが構築されたのはこれが初めてです。
論文 参考訳(メタデータ) (2020-12-09T21:41:40Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。