論文の概要: Graph data augmentation with Gromow-Wasserstein Barycenters
- arxiv url: http://arxiv.org/abs/2404.08376v1
- Date: Fri, 12 Apr 2024 10:22:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 15:16:32.542837
- Title: Graph data augmentation with Gromow-Wasserstein Barycenters
- Title(参考訳): Gromow-Wasserstein Barycentersを用いたグラフデータ拡張
- Authors: Andrea Ponti,
- Abstract要約: 非ユークリッド空間で動作するグラフに対する新たな拡張戦略が提案されている。
非ユークリッド距離、特にグロモウ=ワッサーシュタイン距離は、グラフンのより良い近似をもたらす。
このフレームワークはまた、異なるグラフオン推定アプローチを検証する手段を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are ubiquitous in various fields, and deep learning methods have been successful applied in graph classification tasks. However, building large and diverse graph datasets for training can be expensive. While augmentation techniques exist for structured data like images or numerical data, the augmentation of graph data remains challenging. This is primarily due to the complex and non-Euclidean nature of graph data. In this paper, it has been proposed a novel augmentation strategy for graphs that operates in a non-Euclidean space. This approach leverages graphon estimation, which models the generative mechanism of networks sequences. Computational results demonstrate the effectiveness of the proposed augmentation framework in improving the performance of graph classification models. Additionally, using a non-Euclidean distance, specifically the Gromow-Wasserstein distance, results in better approximations of the graphon. This framework also provides a means to validate different graphon estimation approaches, particularly in real-world scenarios where the true graphon is unknown.
- Abstract(参考訳): グラフは様々な分野でユビキタスであり、深層学習法はグラフ分類タスクに応用されている。
しかし、トレーニングのために大規模で多様なグラフデータセットを構築するのはコストがかかる。
画像や数値データのような構造化データには拡張技術が存在するが、グラフデータの増大は依然として困難である。
これは主にグラフデータの複雑で非ユークリッド性に起因する。
本稿では,非ユークリッド空間で動作するグラフに対する新たな拡張戦略を提案する。
このアプローチは、ネットワークシーケンスの生成機構をモデル化したグラフトン推定を利用する。
計算結果は,グラフ分類モデルの性能向上における拡張フレームワークの有効性を示す。
さらに、非ユークリッド距離、特にグロモウ=ワッサーシュタイン距離を用いることで、グラノンの近似がより良くなる。
このフレームワークは、特に真のグラフオンが未知の現実のシナリオにおいて、異なるグラフオン推定アプローチを検証する手段を提供する。
関連論文リスト
- OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
本研究では,多種多様なグラフデータに存在する複雑なトポロジ的パターンを理解するための一般グラフ基盤モデルを構築した。
本稿では,グラフモデルに統一的なグラフトークン化手法を提案する。
また,グローバルなトポロジ的コンテキスト内のノード依存性を効果的にキャプチャするスケーラブルなグラフ変換器を開発した。
論文 参考訳(メタデータ) (2024-03-02T08:05:03Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphonは任意のサイズでグラフを生成する非パラメトリックモデルであり、グラフから簡単に誘導できる。
解析可能でスケーラブルなグラフ生成モデルを構築するために,textitgraphon autoencoder という新しいフレームワークを提案する。
線形グルーポン分解モデルはデコーダとして機能し、潜在表現を活用して誘導されたグルーポンを再構成する。
論文 参考訳(メタデータ) (2021-05-29T08:11:40Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
本論文では,与えられたグラフ特性に類似したドッペルガンガーグラフを生成する手法を提案する。
このアプローチは、グラフ表現学習、生成的敵ネットワーク、およびグラフ実現アルゴリズムのオーケストレーションである。
論文 参考訳(メタデータ) (2021-01-23T22:08:27Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
グラフ隣接行列の後方分布を構築するための新しい非パラメトリックグラフモデルを提案する。
このモデルの利点を,ノード分類,リンク予測,レコメンデーションという3つの異なる問題設定で示す。
論文 参考訳(メタデータ) (2020-06-23T21:10:55Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。