Rényi entropy of the permutationally invariant part of the ground state across a quantum phase transition
- URL: http://arxiv.org/abs/2404.08389v1
- Date: Fri, 12 Apr 2024 10:45:38 GMT
- Title: Rényi entropy of the permutationally invariant part of the ground state across a quantum phase transition
- Authors: Yuki Miyazaki, Giacomo Marmorini, Nobuo Furukawa, Daisuke Yamamoto,
- Abstract summary: We investigate the role of the permutationally invariant part of the density matrix (PIDM) in capturing the properties of the ground state of the system during a quantum phase transition.
Considering the transverse-field Ising chain as an example, we compute the second-order R'enyi entropy of PIDM for the ground state.
We discuss the cause of these behaviors of the R'enyi entropy of PIDM, examining the possible application of this experimentally tractable quantity to the analysis of phase transition phenomena.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the role of the permutationally invariant part of the density matrix (PIDM) in capturing the properties of the ground state of the system during a quantum phase transition. In the context of quantum state tomography, PIDM is known to be obtainable with only a low number of measurement settings, namely $\mathcal{O}(L^2)$, where $L$ is the system size. Considering the transverse-field Ising chain as an example, we compute the second-order R\'enyi entropy of PIDM for the ground state by using the density matrix renormalization group algorithm. In the ferromagnetic case, the ground state is permutationally invariant both in the limits of zero and infinite field, leading to vanishing R\'enyi entropy of PIDM. The latter exhibits a broad peak as a function of the transverse field around the quantum critical point, which gets more pronounced for larger system size. In the antiferromagnetic case, the peak structure disappears and the R\'enyi entropy diverges like $\mathcal{O}(L)$ in the whole field range of the ordered phase. We discuss the cause of these behaviors of the R\'enyi entropy of PIDM, examining the possible application of this experimentally tractable quantity to the analysis of phase transition phenomena.
Related papers
- Detecting Measurement-Induced Entanglement Transitions With Unitary Mirror Circuits [0.0]
We present a hybrid quantum-classical algorithm which creates a "unitary mirror" of a projected circuit.
We show that the unitary mirror can well-approximate the experimental state above $p_c$ but fails exponentially below it.
We also present numerical results for small qubit numbers and for monitored circuits with random Clifford gates.
arXiv Detail & Related papers (2024-01-30T19:00:11Z) - Complex dynamics approach to dynamical quantum phase transitions: the
Potts model [0.0]
This paper introduces complex dynamics methods to study dynamical quantum phase transitions in the one- and two-dimensional quantum 3-state Potts model.
We show that special boundary conditions can alter the nature of the transitions, and verify the claim for the one-dimensional system by transfer matrix calculations.
Our approach can be extended to multi-variable problems, higher dimensions, and approximate RG transformations expressed as rational functions.
arXiv Detail & Related papers (2023-08-28T18:26:41Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Entanglement transitions and quantum bifurcations under continuous
long-range monitoring [0.0]
We study the bipartite entanglement entropy of the quantum trajectories of a free-fermionic system, when subject to a continuous nonlocal monitoring.
arXiv Detail & Related papers (2023-07-11T18:00:08Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Scaling properties of a spatial one-particle density-matrix entropy in
many-body localized systems [0.0]
We investigate a quantum entropy extracted from the one-particle density matrix (OPDM) in one-dimensional interacting fermions.
We numerically show that the OPDM entropy of the eigenstates obeys an area law.
arXiv Detail & Related papers (2020-11-04T09:48:46Z) - R\'enyi Entropy Singularities as Signatures of Topological Criticality
in Coupled Photon-Fermion Systems [0.0]
We show that the topological phase transition for a Kitaev chain embedded in a cavity can be identified by measuring experimentally accessible photon observables.
We propose a direct link between those observables and quantum entropy singularities.
arXiv Detail & Related papers (2020-07-13T18:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.