Mitigating Challenges of the Space Environment for Onboard Artificial Intelligence: Design Overview of the Imaging Payload on SpIRIT
- URL: http://arxiv.org/abs/2404.08399v1
- Date: Fri, 12 Apr 2024 11:08:26 GMT
- Title: Mitigating Challenges of the Space Environment for Onboard Artificial Intelligence: Design Overview of the Imaging Payload on SpIRIT
- Authors: Miguel Ortiz del Castillo, Jonathan Morgan, Jack McRobbie, Clint Therakam, Zaher Joukhadar, Robert Mearns, Simon Barraclough, Richard Sinnott, Andrew Woods, Chris Bayliss, Kris Ehinger, Ben Rubinstein, James Bailey, Airlie Chapman, Michele Trenti,
- Abstract summary: We present the hardware and software design of an onboard AI subsystem hosted on SpIRIT.
The system is optimised for on-board computer vision experiments based on visible light and long wave infrared cameras.
This paper highlights the key design choices made to maximise the robustness of the system in harsh space conditions.
- Score: 6.982433998815122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) and autonomous edge computing in space are emerging areas of interest to augment capabilities of nanosatellites, where modern sensors generate orders of magnitude more data than can typically be transmitted to mission control. Here, we present the hardware and software design of an onboard AI subsystem hosted on SpIRIT. The system is optimised for on-board computer vision experiments based on visible light and long wave infrared cameras. This paper highlights the key design choices made to maximise the robustness of the system in harsh space conditions, and their motivation relative to key mission requirements, such as limited compute resources, resilience to cosmic radiation, extreme temperature variations, distribution shifts, and very low transmission bandwidths. The payload, called Loris, consists of six visible light cameras, three infrared cameras, a camera control board and a Graphics Processing Unit (GPU) system-on-module. Loris enables the execution of AI models with on-orbit fine-tuning as well as a next-generation image compression algorithm, including progressive coding. This innovative approach not only enhances the data processing capabilities of nanosatellites but also lays the groundwork for broader applications to remote sensing from space.
Related papers
- Latent Space Imaging [15.435034286180295]
We propose to follow a similar approach for the development of artificial vision systems.
Latent Space Imaging is a new paradigm that, through a combination of optics and software, directly encodes the image information into the semantically rich latent space of a generative model.
We demonstrate this new principle through an initial hardware prototype based on the single pixel camera.
arXiv Detail & Related papers (2024-07-09T17:17:03Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting [0.0]
We present an approach for mapping of satellites on orbit based on 3D Gaussian Splatting.
We demonstrate model training and 3D rendering performance on a hardware-in-the-loop satellite mock-up.
Our model is shown to be capable of training on-board and rendering higher quality novel views of an unknown satellite nearly 2 orders of magnitude faster than previous NeRF-based algorithms.
arXiv Detail & Related papers (2024-01-05T00:49:56Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Silicon photonic subspace neural chip for hardware-efficient deep
learning [11.374005508708995]
optical neural network (ONN) is a promising candidate for next-generation neurocomputing.
We devise a hardware-efficient photonic subspace neural network architecture.
We experimentally demonstrate our PSNN on a butterfly-style programmable silicon photonic integrated circuit.
arXiv Detail & Related papers (2021-11-11T06:34:05Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.