Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Patients Using a Longitudinally-Aware Segmentation Network
- URL: http://arxiv.org/abs/2404.08611v2
- Date: Tue, 01 Oct 2024 00:14:32 GMT
- Title: Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Patients Using a Longitudinally-Aware Segmentation Network
- Authors: Xin Tie, Muheon Shin, Changhee Lee, Scott B. Perlman, Zachary Huemann, Amy J. Weisman, Sharon M. Castellino, Kara M. Kelly, Kathleen M. McCarten, Adina L. Alazraki, Junjie Hu, Steve Y. Cho, Tyler J. Bradshaw,
- Abstract summary: longitudinally-aware segmentation network (LAS-Net) can quantify serial PET/CT images for pediatric Hodgkin lymphoma patients.
LAS-Net incorporates longitudinal cross-attention, allowing relevant features from PET1 to inform the analysis of PET2.
LAS-Net detected residual lymphoma in PET2 with an F1 score of 0.606.
- Score: 7.225391135995692
- License:
- Abstract: $\textbf{Purpose}$: Automatic quantification of longitudinal changes in PET scans for lymphoma patients has proven challenging, as residual disease in interim-therapy scans is often subtle and difficult to detect. Our goal was to develop a longitudinally-aware segmentation network (LAS-Net) that can quantify serial PET/CT images for pediatric Hodgkin lymphoma patients. $\textbf{Materials and Methods}$: This retrospective study included baseline (PET1) and interim (PET2) PET/CT images from 297 patients enrolled in two Children's Oncology Group clinical trials (AHOD1331 and AHOD0831). LAS-Net incorporates longitudinal cross-attention, allowing relevant features from PET1 to inform the analysis of PET2. Model performance was evaluated using Dice coefficients for PET1 and detection F1 scores for PET2. Additionally, we extracted and compared quantitative PET metrics, including metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in PET1, as well as qPET and $\Delta$SUVmax in PET2, against physician measurements. We quantified their agreement using Spearman's $\rho$ correlations and employed bootstrap resampling for statistical analysis. $\textbf{Results}$: LAS-Net detected residual lymphoma in PET2 with an F1 score of 0.606 (precision/recall: 0.615/0.600), outperforming all comparator methods (P<0.01). For baseline segmentation, LAS-Net achieved a mean Dice score of 0.772. In PET quantification, LAS-Net's measurements of qPET, $\Delta$SUVmax, MTV and TLG were strongly correlated with physician measurements, with Spearman's $\rho$ of 0.78, 0.80, 0.93 and 0.96, respectively. The performance remained high, with a slight decrease, in an external testing cohort. $\textbf{Conclusion}$: LAS-Net demonstrated significant improvements in quantifying PET metrics across serial scans, highlighting the value of longitudinal awareness in evaluating multi-time-point imaging datasets.
Related papers
- ConPET: Continual Parameter-Efficient Tuning for Large Language Models [65.48107393731861]
Continual learning requires continual adaptation of models to newly emerging tasks.
We propose Continual.
Efficient Tuning (ConPET), a generalizable paradigm for.
continual task adaptation of large language models.
arXiv Detail & Related papers (2023-09-26T08:52:04Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Multimodal Deep Learning to Differentiate Tumor Recurrence from
Treatment Effect in Human Glioblastoma [2.726462580631231]
Differentiating tumor progression (TP) from treatment-related necrosis (TN) is critical for clinical management decisions in glioblastoma (GBM)
dPET includes novel methods of a model-corrected blood input function that accounts for partial volume averaging to compute parametric maps that reveal kinetic information.
CNN was trained to predict classification accuracy between TP and TN for $35$ brain tumors from $26$ subjects in the PET-MR image space.
arXiv Detail & Related papers (2023-02-27T20:12:28Z) - Whole-body tumor segmentation of 18F -FDG PET/CT using a cascaded and
ensembled convolutional neural networks [2.735686397209314]
The goal of this study was to report the performance of a deep neural network designed to automatically segment regions suspected of cancer in whole-body 18F-FDG PET/CT images.
A cascaded approach was developed where a stacked ensemble of 3D UNET CNN processed the PET/CT images at a fixed 6mm resolution.
arXiv Detail & Related papers (2022-10-14T19:25:56Z) - AutoPET Challenge 2022: Step-by-Step Lesion Segmentation in Whole-body
FDG-PET/CT [0.0]
We propose a novel step-by-step 3D segmentation method to address this problem.
We achieved Dice score of 0.92, false positive volume of 0.89 and false negative volume of 0.53 on preliminary test set.
arXiv Detail & Related papers (2022-09-04T13:49:26Z) - Synthetic PET via Domain Translation of 3D MRI [1.0052333944678682]
We use a dataset of 56 $18$F-FDG-PET/MRI exams to train a 3D residual UNet to predict physiologic PET uptake from whole-body T1-weighted MRI.
The predicted PET images are forward projected to produce synthetic PET time-of-flight sinograms that can be used with vendor-provided PET reconstruction algorithms.
arXiv Detail & Related papers (2022-06-11T21:32:40Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Convolutional neural network based deep-learning architecture for
intraprostatic tumour contouring on PSMA PET images in patients with primary
prostate cancer [3.214308133129678]
The aim of this study was to develop a convolutional neural network (CNN) for automated segmentation of intraprostatic tumour (GTV) in PSMA-PET.
The CNN was trained on [68Ga]PSMA-PET and [18F]PSMA-PET images of 152 patients from two different institutions.
arXiv Detail & Related papers (2020-08-07T14:32:14Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.