Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans
- URL: http://arxiv.org/abs/2406.09327v3
- Date: Mon, 8 Jul 2024 14:30:42 GMT
- Title: Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans
- Authors: Stefan P. Hein, Manuel Schultheiss, Andrei Gafita, Raphael Zaum, Farid Yagubbayli, Robert Tauber, Isabel Rauscher, Matthias Eiber, Franz Pfeiffer, Wolfgang A. Weber,
- Abstract summary: This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans.
Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions.
Experiments have been performed with different input patch types and a Siamese network in 2D and 3D.
- Score: 2.3432822395081807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.
Related papers
- Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images.
We developed a classifier that identifies the tracer of the given PET/CT based on the Maximum Intensity Projection of the PET scan.
Our final submission achieves cross-validation Dice scores of 76.90% and 61.33% for the publicly available FDG and PSMA datasets.
arXiv Detail & Related papers (2024-09-18T17:16:57Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
We present our solution for the autoPET III challenge, targeting multitracer, multicenter generalization using the nnU-Net framework with the ResEncL architecture.
Key techniques include misalignment data augmentation and multi-modal pretraining across CT, MR, and PET datasets.
Compared to the default nnU-Net, which achieved a Dice score of 57.61, our model significantly improved performance with a Dice score of 68.40, alongside a reduction in false positive (FPvol: 7.82) and false negative (FNvol: 10.35) volumes.
arXiv Detail & Related papers (2024-09-14T16:39:17Z) - Segmentation of Prostate Tumour Volumes from PET Images is a Different Ball Game [6.038532253968018]
Existing methods fail to accurately consider the intensity-based scaling applied by the physicians during manual annotation of tumour contours.
We implement a new custom-feature-clipping normalisation technique.
Our results show that the U-Net models achieve much better performance when the PET scans are preprocessed with our novel clipping technique.
arXiv Detail & Related papers (2024-07-15T08:48:17Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Whole-body tumor segmentation of 18F -FDG PET/CT using a cascaded and
ensembled convolutional neural networks [2.735686397209314]
The goal of this study was to report the performance of a deep neural network designed to automatically segment regions suspected of cancer in whole-body 18F-FDG PET/CT images.
A cascaded approach was developed where a stacked ensemble of 3D UNET CNN processed the PET/CT images at a fixed 6mm resolution.
arXiv Detail & Related papers (2022-10-14T19:25:56Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - Automatic Tumor Segmentation via False Positive Reduction Network for
Whole-Body Multi-Modal PET/CT Images [12.885308856495353]
In PET/CT image assessment, automatic tumor segmentation is an important step.
Existing methods tend to over-segment the tumor regions and include regions such as the normal high organs, inflammation, and other infections.
We introduce a false positive reduction network to overcome this limitation.
arXiv Detail & Related papers (2022-09-16T04:01:14Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.