EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams
- URL: http://arxiv.org/abs/2404.08640v1
- Date: Fri, 12 Apr 2024 17:59:47 GMT
- Title: EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams
- Authors: Christen Millerdurai, Hiroyasu Akada, Jian Wang, Diogo Luvizon, Christian Theobalt, Vladislav Golyanik,
- Abstract summary: This paper introduces a new problem, i.e., 3D human motion capture from an egocentric monocular event camera with a fisheye lens.
Event streams have high temporal resolution and provide reliable cues for 3D human motion capture under high-speed human motions and rapidly changing illumination.
Our EE3D demonstrates robustness and superior 3D accuracy compared to existing solutions while supporting real-time 3D pose update rates of 140Hz.
- Score: 59.77837807004765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular egocentric 3D human motion capture is a challenging and actively researched problem. Existing methods use synchronously operating visual sensors (e.g. RGB cameras) and often fail under low lighting and fast motions, which can be restricting in many applications involving head-mounted devices. In response to the existing limitations, this paper 1) introduces a new problem, i.e., 3D human motion capture from an egocentric monocular event camera with a fisheye lens, and 2) proposes the first approach to it called EventEgo3D (EE3D). Event streams have high temporal resolution and provide reliable cues for 3D human motion capture under high-speed human motions and rapidly changing illumination. The proposed EE3D framework is specifically tailored for learning with event streams in the LNES representation, enabling high 3D reconstruction accuracy. We also design a prototype of a mobile head-mounted device with an event camera and record a real dataset with event observations and the ground-truth 3D human poses (in addition to the synthetic dataset). Our EE3D demonstrates robustness and superior 3D accuracy compared to existing solutions across various challenging experiments while supporting real-time 3D pose update rates of 140Hz.
Related papers
- E-3DGS: Gaussian Splatting with Exposure and Motion Events [29.042018288378447]
We propose E-3DGS, a novel event-based approach that partitions events into motion and exposure.
We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations.
Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods.
arXiv Detail & Related papers (2024-10-22T13:17:20Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - ExFMan: Rendering 3D Dynamic Humans with Hybrid Monocular Blurry Frames and Events [7.820081911598502]
We propose ExFMan, the first neural rendering framework that renders high-quality humans in rapid motion with a hybrid frame-based RGB and bio-inspired event camera.
We first formulate a velocity field of the 3D body in the canonical space and render it to image space to identify the body parts with motion blur.
We then propose two novel losses, i.e., velocity-aware photometric loss and velocity-relative event loss, to optimize the neural human for both modalities.
arXiv Detail & Related papers (2024-09-21T10:58:01Z) - 3D Human Scan With A Moving Event Camera [7.734104968315144]
Event cameras have the advantages of high temporal resolution and high dynamic range.
This paper proposes a novel event-based method for 3D pose estimation and human mesh recovery.
arXiv Detail & Related papers (2024-04-12T14:34:24Z) - HULC: 3D Human Motion Capture with Pose Manifold Sampling and Dense
Contact Guidance [82.09463058198546]
Marker-less monocular 3D human motion capture (MoCap) with scene interactions is a challenging research topic relevant for extended reality, robotics and virtual avatar generation.
We propose HULC, a new approach for 3D human MoCap which is aware of the scene geometry.
arXiv Detail & Related papers (2022-05-11T17:59:31Z) - Differentiable Event Stream Simulator for Non-Rigid 3D Tracking [82.56690776283428]
Our differentiable simulator enables non-rigid 3D tracking of deformable objects from event streams.
We show the effectiveness of our approach for various types of non-rigid objects and compare to existing methods for non-rigid 3D tracking.
arXiv Detail & Related papers (2021-04-30T17:58:07Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
We introduce (HPS) Human POSEitioning System, a method to recover the full 3D pose of a human registered with a 3D scan of the surrounding environment.
We show that our optimization-based integration exploits the benefits of the two, resulting in pose accuracy free of drift.
HPS could be used for VR/AR applications where humans interact with the scene without requiring direct line of sight with an external camera.
arXiv Detail & Related papers (2021-03-31T17:58:31Z) - EventHands: Real-Time Neural 3D Hand Reconstruction from an Event Stream [80.15360180192175]
3D hand pose estimation from monocular videos is a long-standing and challenging problem.
We address it for the first time using a single event camera, i.e., an asynchronous vision sensor reacting on brightness changes.
Our approach has characteristics previously not demonstrated with a single RGB or depth camera.
arXiv Detail & Related papers (2020-12-11T16:45:34Z) - E3D: Event-Based 3D Shape Reconstruction [19.823758341937605]
3D shape reconstruction is a primary component of augmented/virtual reality.
Previous solutions based on RGB, RGB-D and Lidar sensors are power and data intensive.
We approach 3D reconstruction with an event camera, a sensor with significantly lower power, latency and data expense.
arXiv Detail & Related papers (2020-12-09T18:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.