EventEgo3D++: 3D Human Motion Capture from a Head-Mounted Event Camera
- URL: http://arxiv.org/abs/2502.07869v1
- Date: Tue, 11 Feb 2025 18:57:05 GMT
- Title: EventEgo3D++: 3D Human Motion Capture from a Head-Mounted Event Camera
- Authors: Christen Millerdurai, Hiroyasu Akada, Jian Wang, Diogo Luvizon, Alain Pagani, Didier Stricker, Christian Theobalt, Vladislav Golyanik,
- Abstract summary: EventEgo3D++ is a monocular event camera with a fisheye lens for 3D human motion capture.
Event cameras excel in high-speed scenarios and varying illumination due to their high temporal resolution.
Our method supports real-time 3D pose updates at a rate of 140Hz.
- Score: 64.58147600753382
- License:
- Abstract: Monocular egocentric 3D human motion capture remains a significant challenge, particularly under conditions of low lighting and fast movements, which are common in head-mounted device applications. Existing methods that rely on RGB cameras often fail under these conditions. To address these limitations, we introduce EventEgo3D++, the first approach that leverages a monocular event camera with a fisheye lens for 3D human motion capture. Event cameras excel in high-speed scenarios and varying illumination due to their high temporal resolution, providing reliable cues for accurate 3D human motion capture. EventEgo3D++ leverages the LNES representation of event streams to enable precise 3D reconstructions. We have also developed a mobile head-mounted device (HMD) prototype equipped with an event camera, capturing a comprehensive dataset that includes real event observations from both controlled studio environments and in-the-wild settings, in addition to a synthetic dataset. Additionally, to provide a more holistic dataset, we include allocentric RGB streams that offer different perspectives of the HMD wearer, along with their corresponding SMPL body model. Our experiments demonstrate that EventEgo3D++ achieves superior 3D accuracy and robustness compared to existing solutions, even in challenging conditions. Moreover, our method supports real-time 3D pose updates at a rate of 140Hz. This work is an extension of the EventEgo3D approach (CVPR 2024) and further advances the state of the art in egocentric 3D human motion capture. For more details, visit the project page at https://eventego3d.mpi-inf.mpg.de.
Related papers
- E-3DGS: Gaussian Splatting with Exposure and Motion Events [29.042018288378447]
We propose E-3DGS, a novel event-based approach that partitions events into motion and exposure.
We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations.
Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods.
arXiv Detail & Related papers (2024-10-22T13:17:20Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams [59.77837807004765]
This paper introduces a new problem, i.e., 3D human motion capture from an egocentric monocular event camera with a fisheye lens.
Event streams have high temporal resolution and provide reliable cues for 3D human motion capture under high-speed human motions and rapidly changing illumination.
Our EE3D demonstrates robustness and superior 3D accuracy compared to existing solutions while supporting real-time 3D pose update rates of 140Hz.
arXiv Detail & Related papers (2024-04-12T17:59:47Z) - 3D Human Scan With A Moving Event Camera [7.734104968315144]
Event cameras have the advantages of high temporal resolution and high dynamic range.
This paper proposes a novel event-based method for 3D pose estimation and human mesh recovery.
arXiv Detail & Related papers (2024-04-12T14:34:24Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
We develop a generative motion prior specific for hands, trained on the AMASS dataset which features diverse and high-quality hand motions.
Our integration of a robust motion prior significantly enhances performance, especially in occluded scenarios.
We demonstrate our method's efficacy via qualitative and quantitative evaluations on the HO3D and DexYCB datasets.
arXiv Detail & Related papers (2023-12-27T22:35:33Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
We introduce (HPS) Human POSEitioning System, a method to recover the full 3D pose of a human registered with a 3D scan of the surrounding environment.
We show that our optimization-based integration exploits the benefits of the two, resulting in pose accuracy free of drift.
HPS could be used for VR/AR applications where humans interact with the scene without requiring direct line of sight with an external camera.
arXiv Detail & Related papers (2021-03-31T17:58:31Z) - EventHands: Real-Time Neural 3D Hand Reconstruction from an Event Stream [80.15360180192175]
3D hand pose estimation from monocular videos is a long-standing and challenging problem.
We address it for the first time using a single event camera, i.e., an asynchronous vision sensor reacting on brightness changes.
Our approach has characteristics previously not demonstrated with a single RGB or depth camera.
arXiv Detail & Related papers (2020-12-11T16:45:34Z) - E3D: Event-Based 3D Shape Reconstruction [19.823758341937605]
3D shape reconstruction is a primary component of augmented/virtual reality.
Previous solutions based on RGB, RGB-D and Lidar sensors are power and data intensive.
We approach 3D reconstruction with an event camera, a sensor with significantly lower power, latency and data expense.
arXiv Detail & Related papers (2020-12-09T18:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.