論文の概要: FewUser: Few-Shot Social User Geolocation via Contrastive Learning
- arxiv url: http://arxiv.org/abs/2404.08662v1
- Date: Thu, 28 Mar 2024 09:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-21 20:04:31.251856
- Title: FewUser: Few-Shot Social User Geolocation via Contrastive Learning
- Title(参考訳): FewUser: コントラスト学習によるソーシャルユーザジオロケーション
- Authors: Menglin Li, Kwan Hui Lim,
- Abstract要約: FewUserはFew-shotソーシャルユーザー位置情報の新しいフレームワークである。
FewUserは、事前訓練された言語モデル(PLM)を利用して、多様なソーシャルメディア入力を効果的に処理し、融合するユーザ表現モジュールを備えている。
本研究では、ユーザ表現が位置情報性能に与える影響を総合的に分析する。
- 参考スコア(独自算出の注目度): 5.104305392215512
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To address the challenges of scarcity in geotagged data for social user geolocation, we propose FewUser, a novel framework for Few-shot social User geolocation. We incorporate a contrastive learning strategy between users and locations to improve geolocation performance with no or limited training data. FewUser features a user representation module that harnesses a pre-trained language model (PLM) and a user encoder to process and fuse diverse social media inputs effectively. To bridge the gap between PLM's knowledge and geographical data, we introduce a geographical prompting module with hard, soft, and semi-soft prompts, to enhance the encoding of location information. Contrastive learning is implemented through a contrastive loss and a matching loss, complemented by a hard negative mining strategy to refine the learning process. We construct two datasets TwiU and FliU, containing richer metadata than existing benchmarks, to evaluate FewUser and the extensive experiments demonstrate that FewUser significantly outperforms state-of-the-art methods in both zero-shot and various few-shot settings, achieving absolute improvements of 26.95\% and \textbf{41.62\%} on TwiU and FliU, respectively, with only one training sample per class. We further conduct a comprehensive analysis to investigate the impact of user representation on geolocation performance and the effectiveness of FewUser's components, offering valuable insights for future research in this area.
- Abstract(参考訳): ソーシャルユーザジオロケーションのためのジオタグデータの不足に対処するため、FewUserというソーシャルユーザジオロケーションのための新しいフレームワークを提案する。
ユーザとロケーション間のコントラスト学習戦略を取り入れて,トレーニングデータに制限なく位置情報性能を向上させる。
FewUserは、事前訓練された言語モデル(PLM)を利用するユーザ表現モジュールと、多様なソーシャルメディア入力を効率的に処理し、融合させるユーザエンコーダを備えている。
PLMの知識と地理的データとのギャップを埋めるため、ハード、ソフト、セミソフトのプロンプトを持つ地理的プロンプトモジュールを導入し、位置情報のエンコーディングを強化する。
コントラスト学習は、対照的な損失と一致した損失を通じて実施され、学習プロセスを洗練するための強硬な負のマイニング戦略によって補完される。
既存のベンチマークよりも豊富なメタデータを含むTwiUとFliUの2つのデータセットを構築し、FewUserを評価することで、FewUserはゼロショットと様々な数ショット設定の両方で最先端のメソッドを著しく上回り、TwiUとFliUでは26.95\%と \textbf{41.62\%の絶対的な改善を実現している。
さらに、ユーザ表現が位置情報性能に与える影響とFewUserのコンポーネントの有効性を総合的に分析し、今後の研究に有用な知見を提供する。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Into the Unknown: Generating Geospatial Descriptions for New Environments [18.736071151303726]
レンデブー課題は、同心空間関係の推論を必要とする。
座標と組み合わせたオープンソース記述(例えばウィキペディア)を使用することで、トレーニングデータを提供するが、空間指向の限られたテキストに悩まされる。
新しい環境のための高品質な合成データを生成するための大規模拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T14:56:21Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$は、アルゴリズムに基づくパーソナライズされたフェデレーション学習フレームワークである。
我々は、textitLearn2pFed$が、従来のパーソナライズされたフェデレーション学習方法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-01-16T12:45:15Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - Location Leakage in Federated Signal Maps [7.093808731951124]
複数のモバイルデバイスで収集した測定値からセルラーネットワーク性能(信号マップ)を予測することの問題点を考察する。
i) フェデレーション学習は、ユーザがデバイスにトレーニングデータを保持しながら、協調的にモデルをトレーニングすることを可能にする。
我々は、FLに参加しているターゲットユーザーから更新を観測し、グラデーション(DLG)タイプの攻撃による深い漏洩を用いて位置情報を推測する、誠実だが正確なサーバを考える。
FLのチューニングを含むフェデレーション学習フレームワーク内でのメカニズムの再検討と設計により、位置のプライバシーを保護するために、この観測に基づいて構築する。
論文 参考訳(メタデータ) (2021-12-07T02:28:12Z) - Enhancing Prototypical Few-Shot Learning by Leveraging the Local-Level
Strategy [75.63022284445945]
既存の作業では、ローカルレベルの機能をすべて混ぜることで、イメージレベルの機能に基づいた、いくつかのショットモデルを構築することがよくあります。
a) 基地と新規カテゴリーの識別的位置バイアスを回避するための地域非依存のトレーニング戦略,(b) 地域レベルの特徴の正確な比較を捉えるための新しい地域レベルの類似度尺度を提案する。
論文 参考訳(メタデータ) (2021-11-08T08:45:15Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Large-scale Hybrid Approach for Predicting User Satisfaction with
Conversational Agents [28.668681892786264]
ユーザの満足度を測定することは難しい課題であり、大規模な会話エージェントシステムの開発において重要な要素である。
人間のアノテーションに基づくアプローチは簡単に制御できるが、スケールするのは難しい。
新たなアプローチとして,会話エージェントシステムに埋め込まれたフィードバック誘導システムを通じて,ユーザの直接的なフィードバックを収集する手法がある。
論文 参考訳(メタデータ) (2020-05-29T16:29:09Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - Personalized Federated Learning: A Meta-Learning Approach [28.281166755509886]
フェデレートラーニング(Federated Learning)では、複数のコンピューティングユニット(ユーザ)にまたがるモデルをトレーニングすることを目的としています。
本稿では,現在あるいは新規利用者が自身のデータに対して1段階ないし数段階の勾配降下を実行することで,ローカルデータセットに容易に適応できるような,初歩的な共有モデルを見つけることを目標とする,フェデレーション学習のパーソナライズされたバリエーションについて検討する。
論文 参考訳(メタデータ) (2020-02-19T01:08:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。