Apollonion: Profile-centric Dialog Agent
- URL: http://arxiv.org/abs/2404.08692v1
- Date: Wed, 10 Apr 2024 03:32:41 GMT
- Title: Apollonion: Profile-centric Dialog Agent
- Authors: Shangyu Chen, Zibo Zhao, Yuanyuan Zhao, Xiang Li,
- Abstract summary: We propose a framework for dialog agent to incorporate user profiling (initialization, update): user's query and response is analyzed and organized into a structural user profile.
We propose a series of evaluation protocols for personalization: to what extend the response is personal to the different users.
- Score: 9.657755354649048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Large Language Models (LLMs) has innovated the development of dialog agents. Specially, a well-trained LLM, as a central process unit, is capable of providing fluent and reasonable response for user's request. Besides, auxiliary tools such as external knowledge retrieval, personalized character for vivid response, short/long-term memory for ultra long context management are developed, completing the usage experience for LLM-based dialog agents. However, the above-mentioned techniques does not solve the issue of \textbf{personalization from user perspective}: agents response in a same fashion to different users, without consideration of their features, such as habits, interests and past experience. In another words, current implementation of dialog agents fail in ``knowing the user''. The capacity of well-description and representation of user is under development. In this work, we proposed a framework for dialog agent to incorporate user profiling (initialization, update): user's query and response is analyzed and organized into a structural user profile, which is latter served to provide personal and more precise response. Besides, we proposed a series of evaluation protocols for personalization: to what extend the response is personal to the different users. The framework is named as \method{}, inspired by inscription of ``Know Yourself'' in the temple of Apollo (also known as \method{}) in Ancient Greek. Few works have been conducted on incorporating personalization into LLM, \method{} is a pioneer work on guiding LLM's response to meet individuation via the application of dialog agents, with a set of evaluation methods for measurement in personalization.
Related papers
- Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search [9.243535345193711]
Our method uses large language models to guide a single human worker in generating personalized dialogues.
LAPS can collect large-scale, human-written, multi-session, and multi-domain conversations.
Our results show that responses generated explicitly using extracted preferences better match user's actual preferences.
arXiv Detail & Related papers (2024-05-06T13:53:03Z) - Aligning LLM Agents by Learning Latent Preference from User Edits [23.235995078727658]
We study interactive learning of language agents based on user edits made to the agent's output.
We propose a learning framework, PRELUDE, that infers a description of the user's latent preference based on historic edit data.
We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation.
arXiv Detail & Related papers (2024-04-23T17:57:47Z) - Interpreting User Requests in the Context of Natural Language Standing
Instructions [89.12540932734476]
We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains.
A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue.
arXiv Detail & Related papers (2023-11-16T11:19:26Z) - PRODIGy: a PROfile-based DIalogue Generation dataset [12.566555088877871]
We propose a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality.
This framework allows to test several baselines built using generative language models with several profile configurations.
arXiv Detail & Related papers (2023-11-09T08:19:34Z) - Open-Ended Instructable Embodied Agents with Memory-Augmented Large
Language Models [19.594361652336996]
We introduce HELPER, an embodied agent equipped with an external memory of language-program pairs.
relevant memories are retrieved based on the current dialogue, instruction, correction, or VLM description.
HELPER sets a new state-of-the-art in the TEACh benchmark in both Execution from Dialog History (EDH) and Trajectory from Dialogue (TfD)
arXiv Detail & Related papers (2023-10-23T17:31:55Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - A Cooperative Memory Network for Personalized Task-oriented Dialogue
Systems with Incomplete User Profiles [55.951126447217526]
We study personalized Task-oriented Dialogue Systems without assuming that user profiles are complete.
We propose a Cooperative Memory Network (CoMemNN) that has a novel mechanism to gradually enrich user profiles.
CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3.06% in terms of response selection accuracy.
arXiv Detail & Related papers (2021-02-16T18:05:54Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.