Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search
- URL: http://arxiv.org/abs/2405.03480v1
- Date: Mon, 06 May 2024 13:53:03 GMT
- Title: Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search
- Authors: Hideaki Joko, Shubham Chatterjee, Andrew Ramsay, Arjen P. de Vries, Jeff Dalton, Faegheh Hasibi,
- Abstract summary: Our method uses large language models to guide a single human worker in generating personalized dialogues.
LAPS can collect large-scale, human-written, multi-session, and multi-domain conversations.
Our results show that responses generated explicitly using extracted preferences better match user's actual preferences.
- Score: 9.243535345193711
- License:
- Abstract: The future of conversational agents will provide users with personalized information responses. However, a significant challenge in developing models is the lack of large-scale dialogue datasets that span multiple sessions and reflect real-world user preferences. Previous approaches rely on experts in a wizard-of-oz setup that is difficult to scale, particularly for personalized tasks. Our method, LAPS, addresses this by using large language models (LLMs) to guide a single human worker in generating personalized dialogues. This method has proven to speed up the creation process and improve quality. LAPS can collect large-scale, human-written, multi-session, and multi-domain conversations, including extracting user preferences. When compared to existing datasets, LAPS-produced conversations are as natural and diverse as expert-created ones, which stays in contrast with fully synthetic methods. The collected dataset is suited to train preference extraction and personalized response generation. Our results show that responses generated explicitly using extracted preferences better match user's actual preferences, highlighting the value of using extracted preferences over simple dialogue history. Overall, LAPS introduces a new method to leverage LLMs to create realistic personalized conversational data more efficiently and effectively than previous methods.
Related papers
- Retrieval-Augmented Personalization for Multimodal Large Language Models [53.304699445700926]
We introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization.
RAP allows real-time concept editing via updating the external database.
RAP-MLLMs can generalize to infinite visual concepts without additional finetuning.
arXiv Detail & Related papers (2024-10-17T09:10:26Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''
We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.
For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
We present a public benchmark, PersonalLLM, focusing on adapting LLMs to provide maximal benefits for a particular user.
We curate open-ended prompts paired with many high-quality answers over which users would be expected to display heterogeneous latent preferences.
Our dataset and generated personalities offer an innovative testbed for developing personalization algorithms.
arXiv Detail & Related papers (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests.
This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences.
We propose a novel personalized LLM model, ours. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module.
arXiv Detail & Related papers (2024-09-18T11:54:45Z) - Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models [66.24055500785657]
Traditional turn-based chat systems prevent users from verbally interacting with system while it is generating responses.
To overcome these limitations, we adapt existing LLMs to listen users while generating output and provide users with instant feedback.
We build a dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions.
arXiv Detail & Related papers (2024-06-22T03:20:10Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
This paper proposes the first method for personalized multimodal generation using large language models (LLMs)
It showcases its applications and validates its performance via an extensive experimental study on two datasets.
PMG has a significant improvement on personalization for up to 8% in terms of LPIPS while retaining the accuracy of generation.
arXiv Detail & Related papers (2024-04-07T03:05:57Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
Personalization is an essential factor in user experience with natural language processing (NLP) systems.
With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences.
We propose a novel summary-augmented personalization with task-aware user summaries generated by LLMs.
arXiv Detail & Related papers (2023-10-30T23:40:41Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
We propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more accurate persona information.
Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator.
arXiv Detail & Related papers (2022-04-18T02:02:56Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.