Enhancing Question Answering for Enterprise Knowledge Bases using Large Language Models
- URL: http://arxiv.org/abs/2404.08695v2
- Date: Sat, 20 Apr 2024 05:29:29 GMT
- Title: Enhancing Question Answering for Enterprise Knowledge Bases using Large Language Models
- Authors: Feihu Jiang, Chuan Qin, Kaichun Yao, Chuyu Fang, Fuzhen Zhuang, Hengshu Zhu, Hui Xiong,
- Abstract summary: EKRG is a novel Retrieval-Generation framework based on large language models (LLMs)
We introduce an instruction-tuning method using an LLM to generate sufficient document-question pairs for training a knowledge retriever.
We develop a relevance-aware teacher-student learning strategy to further enhance the efficiency of the training process.
- Score: 46.51659135636255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient knowledge management plays a pivotal role in augmenting both the operational efficiency and the innovative capacity of businesses and organizations. By indexing knowledge through vectorization, a variety of knowledge retrieval methods have emerged, significantly enhancing the efficacy of knowledge management systems. Recently, the rapid advancements in generative natural language processing technologies paved the way for generating precise and coherent answers after retrieving relevant documents tailored to user queries. However, for enterprise knowledge bases, assembling extensive training data from scratch for knowledge retrieval and generation is a formidable challenge due to the privacy and security policies of private data, frequently entailing substantial costs. To address the challenge above, in this paper, we propose EKRG, a novel Retrieval-Generation framework based on large language models (LLMs), expertly designed to enable question-answering for Enterprise Knowledge bases with limited annotation costs. Specifically, for the retrieval process, we first introduce an instruction-tuning method using an LLM to generate sufficient document-question pairs for training a knowledge retriever. This method, through carefully designed instructions, efficiently generates diverse questions for enterprise knowledge bases, encompassing both fact-oriented and solution-oriented knowledge. Additionally, we develop a relevance-aware teacher-student learning strategy to further enhance the efficiency of the training process. For the generation process, we propose a novel chain of thought (CoT) based fine-tuning method to empower the LLM-based generator to adeptly respond to user questions using retrieved documents. Finally, extensive experiments on real-world datasets have demonstrated the effectiveness of our proposed framework.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models [31.209774088374374]
This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models.
We employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information.
We show that TRELM reduces pre-training time by at least 50% and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.
arXiv Detail & Related papers (2024-03-17T13:04:35Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
We propose an innovative end-to-end generative framework for multi-modal knowledge retrieval.
Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases.
We demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
arXiv Detail & Related papers (2024-01-16T08:44:29Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.