MM-PhyQA: Multimodal Physics Question-Answering With Multi-Image CoT Prompting
- URL: http://arxiv.org/abs/2404.08704v1
- Date: Thu, 11 Apr 2024 07:11:47 GMT
- Title: MM-PhyQA: Multimodal Physics Question-Answering With Multi-Image CoT Prompting
- Authors: Avinash Anand, Janak Kapuriya, Apoorv Singh, Jay Saraf, Naman Lal, Astha Verma, Rushali Gupta, Rajiv Shah,
- Abstract summary: We curated a novel dataset, MM-PhyQA, which comprises well-constructed, high schoollevel multimodal physics problems.
For generating answers for questions consisting of multimodal input, we employed Zero-shot prediction using GPT-4 and utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on our dataset.
For evaluating the performance of LLMs consisting solely of textual input, we tested the performance of the base and fine-tuned versions of the Mistral-7B and LLaMA2-7b models.
- Score: 0.6675160100853794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models (LLMs) can achieve human-level performance in various tasks, they continue to face challenges when it comes to effectively tackling multi-step physics reasoning tasks. To identify the shortcomings of existing models and facilitate further research in this area, we curated a novel dataset, MM-PhyQA, which comprises well-constructed, high schoollevel multimodal physics problems. By evaluating the performance of contemporary LLMs that are publicly available, both with and without the incorporation of multimodal elements in these problems, we aim to shed light on their capabilities. For generating answers for questions consisting of multimodal input (in this case, images and text) we employed Zero-shot prediction using GPT-4 and utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on our dataset. For evaluating the performance of LLMs consisting solely of textual input, we tested the performance of the base and fine-tuned versions of the Mistral-7B and LLaMA2-7b models. We also showcased the performance of the novel Multi-Image Chain-of-Thought (MI-CoT) Prompting technique, which when used to train LLaVA-1.5 13b yielded the best results when tested on our dataset, with superior scores in most metrics and the highest accuracy of 71.65% on the test set.
Related papers
- Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
Large Language Models (LLMs) are increasingly being merged with Visual Language Models (VLMs) to enable new capabilities.
We show that, for object and scene recognition, VLMs that do not leverage LLMs can achieve better performance than VLMs that do.
We propose a pragmatic solution: a lightweight fix involving a relatively small LLM that efficiently routes visual tasks to the most suitable model for the task.
arXiv Detail & Related papers (2024-10-03T23:40:21Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - Cleared for Takeoff? Compositional & Conditional Reasoning may be the Achilles Heel to (Flight-Booking) Language Agents [12.391420075730242]
We study compositional and conditional reasoning, two cornerstones of human cognition, and introduce GroundCocoa.
Our task involves aligning detailed user preferences with available flight options presented in a multiple-choice format.
Results indicate a significant disparity in performance among current state-of-the-art LLMs with even the best performing model, GPT-4 Turbo, not exceeding 67% accuracy despite advanced prompting techniques.
arXiv Detail & Related papers (2024-04-05T17:36:26Z) - Are We on the Right Way for Evaluating Large Vision-Language Models? [92.5761176224556]
Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities.
We identify two primary issues: Visual content is unnecessary for many samples and intentional data leakage exists.
We present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans.
arXiv Detail & Related papers (2024-03-29T17:59:34Z) - Enhancing Multimodal Large Language Models with Vision Detection Models: An Empirical Study [32.57246173437492]
This paper presents an empirical study on enhancing MLLMs with state-of-the-art (SOTA) object detection and Optical Character Recognition (OCR) models to improve fine-grained understanding and reduce hallucination in responses.
We conduct systematic and extensive experiments with representative models such as LLaVA-1.5, DINO, PaddleOCRv2, and Grounding DINO.
Notably, the enhanced LLaVA-1.5 outperforms its original 7B/13B models on all 10 benchmarks, achieving an improvement of up to 12.5% on the normalized average score.
arXiv Detail & Related papers (2024-01-31T16:38:32Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
Multi-modal large language models (MLLMs) are trained based on large language models (LLM)
While they excel in multi-modal tasks, the pure NLP abilities of MLLMs are often underestimated and left untested.
We show that visual instruction tuning, a prevailing strategy for transitioning LLMs into MLLMs, unexpectedly and interestingly helps models attain both improved truthfulness and ethical alignment.
arXiv Detail & Related papers (2023-09-13T17:57:21Z) - Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large
Language Models [77.2078051555533]
We propose a novel and affordable solution for the effective VL adaption of large language models (LLMs)
Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters.
MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions.
arXiv Detail & Related papers (2023-05-24T11:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.