Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems
- URL: http://arxiv.org/abs/2406.12172v1
- Date: Tue, 18 Jun 2024 00:44:58 GMT
- Title: Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems
- Authors: Nasim Borazjanizadeh, Roei Herzig, Trevor Darrell, Rogerio Feris, Leonid Karlinsky,
- Abstract summary: We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
- Score: 59.72548591120689
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, Large Language Models (LLMs) attained impressive performance in math and reasoning benchmarks. However, they still often struggle with logic problems and puzzles that are relatively easy for humans. To further investigate this, we introduce a new benchmark, SearchBench, containing 11 unique search problem types, each equipped with automated pipelines to generate an arbitrary number of instances and analyze the feasibility, correctness, and optimality of LLM-generated solutions. We show that even the most advanced LLMs fail to solve these problems end-to-end in text, e.g. GPT4 solves only 1.4%. SearchBench problems require considering multiple pathways to the solution as well as backtracking, posing a significant challenge to auto-regressive models. Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%. In this work, we show that in-context learning with A* algorithm implementations enhances performance. The full potential of this promoting approach emerges when combined with our proposed Multi-Stage-Multi-Try method, which breaks down the algorithm implementation into two stages and verifies the first stage against unit tests, raising GPT-4's performance above 57%.
Related papers
- BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains.
They still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics.
We propose a novel approach, BEATS, to enhance mathematical problem-solving abilities.
arXiv Detail & Related papers (2024-09-26T15:47:42Z) - Program Slicing in the Era of Large Language Models [7.990456190723922]
Program slicing is a critical technique in software engineering, enabling developers to isolate relevant portions of code.
This study investigates the application of large language models (LLMs) to both static and dynamic program slicing.
arXiv Detail & Related papers (2024-09-19T00:07:56Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
We propose a Self-Challenge evaluation framework with human-in-the-loop.
Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances.
We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses.
arXiv Detail & Related papers (2024-08-16T19:01:52Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
We introduce BigCodeBench, a benchmark that challenges Large Language Models (LLMs) to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks.
Our evaluation shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%.
We propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information.
arXiv Detail & Related papers (2024-06-22T15:52:04Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
We argue that recent trends abandon both soundness and completeness for the sake of inefficiency.
We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100% accuracy.
arXiv Detail & Related papers (2024-04-18T01:27:29Z) - Can Language Models Solve Olympiad Programming? [40.54366634332231]
This paper introduces the USACO benchmark with 307 problems from the USA Computing Olympiad.
We construct and test a range of LM inference methods for competitive programming for the first time.
We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting.
arXiv Detail & Related papers (2024-04-16T23:27:38Z) - Improving Large Language Model Fine-tuning for Solving Math Problems [20.417053742869403]
A large gap exists between large language models' pass-at-one and pass-at-N performance in solving math problems.
Using the challenging MATH dataset, we investigate three fine-tuning strategies.
We design a fine-tuning recipe that yields approximately 58.8% accuracy on the MATH dataset with fine-tuned PaLM 2-L models.
arXiv Detail & Related papers (2023-10-16T04:11:19Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
Large language models (LLMs) excel at implementing code from functionality descriptions but struggle with algorithmic problems.
We propose ALGO, a framework that synthesizes Algorithmic programs with LLM-Generated Oracles to guide the generation and verify their correctness.
Experiments show that when equipped with ALGO, we achieve an 8x better one-submission pass rate over the Codex model and a 2.6x better one-submission pass rate over CodeT.
arXiv Detail & Related papers (2023-05-24T00:10:15Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.