Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution
- URL: http://arxiv.org/abs/2404.08744v3
- Date: Mon, 30 Dec 2024 18:10:10 GMT
- Title: Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution
- Authors: Rohan Bali, Ashley N. Tittelbaugh, Shelbi L. Jenkins, Anuj Agrawal, Jerry Horgan, Marco Ruffini, Daniel C. Kilper, Boulat A. Bash,
- Abstract summary: We investigate resource allocation for quantum entanglement over an optical network.<n>We develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network.<n>We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered.
- Score: 4.404652389362312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.
Related papers
- Generative Diffusion Models for Resource Allocation in Wireless Networks [77.36145730415045]
We train a policy to imitate an expert and generate new samples from the optimal distribution.
We achieve near-optimal performance through sequential execution of the generated samples.
We present numerical results in a case study of power control in multi-user interference networks.
arXiv Detail & Related papers (2025-04-28T21:44:31Z) - SPARQ: Efficient Entanglement Distribution and Routing in Space-Air-Ground Quantum Networks [50.91365514137301]
Space-air-ground quantum (SPARQ) network is developed as a means for providing a seamless on-demand entanglement distribution.
Deep reinforcement learning framework is proposed and trained using deep Q-network (DQN) on multiple graphs of SPARQ.
Third-party entanglement distribution policy is proposed to establish entanglement between communication parties.
arXiv Detail & Related papers (2024-09-19T16:31:37Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Unsupervised Graph-based Learning Method for Sub-band Allocation in 6G Subnetworks [2.0583251142940377]
We present an unsupervised approach for frequency sub-band allocation in wireless networks using graph-based learning.
We model the subnetwork deployment as a conflict graph and propose an unsupervised learning approach inspired by the graph colouring and the Potts model to optimize the sub-band allocation.
arXiv Detail & Related papers (2023-12-13T12:57:55Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Optimal resource allocation for flexible-grid entanglement distribution
networks [0.0]
We introduce a general model for entanglement distribution based on frequency-polarization hyperentangled biphotons.
We derive upper bounds on fidelity and entangled bit rate for networks comprising one-to-one user connections.
arXiv Detail & Related papers (2022-04-13T21:31:47Z) - A Q-Learning-based Approach for Distributed Beam Scheduling in mmWave
Networks [18.22250038264899]
We consider the problem of distributed downlink beam scheduling and power allocation for millimeter-Wave (mmWave) cellular networks.
Multiple base stations belonging to different service operators share the same unlicensed spectrum with no central coordination or cooperation among them.
We propose a distributed scheduling approach to power allocation and adaptation for efficient interference management over the shared spectrum by modeling each BS as an independent Q-learning agent.
arXiv Detail & Related papers (2021-10-17T02:58:13Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Efficient power allocation using graph neural networks and deep
algorithm unfolding [40.78748956518785]
We study the problem of optimal power allocation in a single-hop ad hoc wireless network.
We propose a hybrid neural architecture inspired by the unfolding of the algorithmic weighted minimum mean squared error (WMMSE)
We show that UWMMSE achieves robustness comparable to that of WMMSE while significantly reducing the computational complexity.
arXiv Detail & Related papers (2020-11-18T05:28:24Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.