Modeling Stochastic Chemical Kinetics on Quantum Computers
- URL: http://arxiv.org/abs/2404.08770v1
- Date: Fri, 12 Apr 2024 18:53:38 GMT
- Title: Modeling Stochastic Chemical Kinetics on Quantum Computers
- Authors: Tilas Kabengele, Yash M. Lokare, J. B. Marston, Brenda M. Rubenstein,
- Abstract summary: We show how quantum algorithms can be employed to model chemical kinetics using the Schl"ogl Model of a trimolecular reaction network.
Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Chemical Master Equation (CME) provides a highly accurate, yet extremely resource-intensive representation of a stochastic chemical reaction network and its kinetics due to the exponential scaling of its possible states with the number of reacting species. In this work, we demonstrate how quantum algorithms and hardware can be employed to model stochastic chemical kinetics as described by the CME using the Schl\"ogl Model of a trimolecular reaction network as an illustrative example. To ground our study of the performance of our quantum algorithms, we first determine a range of suitable parameters for constructing the stochastic Schl\"ogl operator in the mono- and bistable regimes of the model using a classical computer and then discuss the appropriateness of our parameter choices for modeling approximate kinetics on a quantum computer. We then apply the Variational Quantum Deflation (VQD) algorithm to evaluate the smallest-magnitude eigenvalues, $\lambda_0$ and $\lambda_1$, which describe the transition rates of both the mono- and bi-stable systems, and the Quantum Phase Estimation (QPE) algorithm combined with the Variational Quantum Singular Value Decomposition (VQSVD) algorithm to estimate the zeromode (ground state) of the bistable case. Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode. Altogether, our work outlines a practical path toward the quantum solution of exponentially complex stochastic chemical kinetics problems and other related stochastic differential equations.
Related papers
- Quantum computing of reacting flows via Hamiltonian simulation [13.377719901871027]
We develop the quantum spectral and finite difference methods for simulating reacting flows in periodic and general conditions.
The present quantum computing algorithms offer a one-shot'' solution for a given time without temporal discretization.
arXiv Detail & Related papers (2023-12-13T04:31:49Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Potential energy surfaces inference of both ground and excited state
using hybrid quantum-classical neural network [0.0]
A hybrid quantum-classical neural network has been proposed for surrogate modeling of the variational quantum eigensolver.
We extend the model by using the subspace-search variational quantum eigensolver procedure so that the PESs of the both ground and excited state can be inferred with chemical accuracy.
arXiv Detail & Related papers (2022-12-06T14:28:44Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Quantum computing for classical problems: Variational Quantum
Eigensolver for activated processes [0.0]
This paper reports the development and implementation of a Variational Quantum Eigensolver procedure to solve the Fokker-Planck-Smoluchowski eigenvalue problem.
We show that such an algorithm, typically adopted to address quantum chemistry problems, can be applied effectively to classical systems paving the way to new applications of quantum computers.
arXiv Detail & Related papers (2021-07-27T18:16:16Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Considerations for evaluating thermodynamic properties with hybrid
quantum-classical computing work-flows [0.0]
Quantum chemistry applications on quantum computers currently rely heavily on the variational quantum eigensolver algorithm.
We present a summary of the hybrid quantum-classical work-flow to compute thermodynamic properties.
We show that through careful selection of work-flow options, nearly order-of-magnitude increases in accuracy are possible at equivalent computing time.
arXiv Detail & Related papers (2020-03-04T19:32:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.