Considerations for evaluating thermodynamic properties with hybrid
quantum-classical computing work-flows
- URL: http://arxiv.org/abs/2003.02303v2
- Date: Fri, 6 Aug 2021 17:15:08 GMT
- Title: Considerations for evaluating thermodynamic properties with hybrid
quantum-classical computing work-flows
- Authors: Spencer T. Stober, Stuart M. Harwood, Donny Greenberg, Tanvi P.
Gujarati, Sarah Mostame, Dimitar Trenev
- Abstract summary: Quantum chemistry applications on quantum computers currently rely heavily on the variational quantum eigensolver algorithm.
We present a summary of the hybrid quantum-classical work-flow to compute thermodynamic properties.
We show that through careful selection of work-flow options, nearly order-of-magnitude increases in accuracy are possible at equivalent computing time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chemistry applications on quantum computers currently rely heavily on
the variational quantum eigensolver (VQE) algorithm. This hybrid
quantum-classical algorithm aims at finding ground state solutions of molecular
systems based on the variational principle. VQE calculations can be
systematically implemented for perturbations to each molecular degree of
freedom, generating a Born-Oppenheimer potential energy surface (PES) for the
molecule. The PES can then be used to derive thermodynamic properties, which
are often desirable for applications in chemical engineering and materials
design. It is clear from this process that quantum chemistry applications
contain a substantial classical computing component in addition to steps that
can be performed using a quantum computer. In order to design efficient
work-flows that take full advantage of each hardware-type, it is critical to
consider the entire process so that the high-accuracy electronic energies
possible from quantum computing are not squandered in the process of
calculating thermodynamic properties. We present a summary of the hybrid
quantum-classical work-flow to compute thermodynamic properties. This work-flow
contains many options that can significantly affect the efficiency and the
accuracy of the results, including classical optimizer attributes, number of
ansatz repetitions, and how the vibrational Schroedinger equation is solved to
determine vibrational modes. We also analyze the effects of these options by
employing robust statistics along with simulations and experiments on actual
quantum hardware. We show that through careful selection of work-flow options,
nearly order-of-magnitude increases in accuracy are possible at equivalent
computing time.
Related papers
- Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Folded Spectrum VQE : A quantum computing method for the calculation of
molecular excited states [0.0]
Folded Spectrum (FS) method as extension to Variational Quantum Eigensolver (VQE) algorithm for computation of molecular excited states.
Inspired by the variance-based methods from the Quantum Monte Carlo literature, the FS method minimizes the energy variance, thus requiring a computationally expensive squared Hamiltonian.
We apply the FS-VQE method to small molecules for a significant reduction of the computational cost.
arXiv Detail & Related papers (2023-05-08T15:34:56Z) - Quantum Eigenvector Continuation for Chemistry Applications [57.70351255180495]
We show that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states.
In all cases, we show that the PES can be captured using relatively few basis states.
arXiv Detail & Related papers (2023-04-28T19:22:58Z) - Potential energy surfaces inference of both ground and excited state
using hybrid quantum-classical neural network [0.0]
A hybrid quantum-classical neural network has been proposed for surrogate modeling of the variational quantum eigensolver.
We extend the model by using the subspace-search variational quantum eigensolver procedure so that the PESs of the both ground and excited state can be inferred with chemical accuracy.
arXiv Detail & Related papers (2022-12-06T14:28:44Z) - Quantum computing for classical problems: Variational Quantum
Eigensolver for activated processes [0.0]
This paper reports the development and implementation of a Variational Quantum Eigensolver procedure to solve the Fokker-Planck-Smoluchowski eigenvalue problem.
We show that such an algorithm, typically adopted to address quantum chemistry problems, can be applied effectively to classical systems paving the way to new applications of quantum computers.
arXiv Detail & Related papers (2021-07-27T18:16:16Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition [41.760443413408915]
We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
arXiv Detail & Related papers (2021-02-14T01:47:52Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Benchmarking the Variational Quantum Eigensolver through Simulation of
the Ground State Energy of Prebiotic Molecules on High-Performance Computers [0.0]
We use the Variational Quantum Eigensolver (VQE) as implemented in the Qiskit software package to compute the ground state energy of small molecules.
The work aims to benchmark algorithms for calculating the electronic structure and energy surfaces of molecules of relevance to prebiotic chemistry.
arXiv Detail & Related papers (2020-10-26T13:29:41Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.