Empowering Malware Detection Efficiency within Processing-in-Memory Architecture
- URL: http://arxiv.org/abs/2404.08818v1
- Date: Fri, 12 Apr 2024 21:28:43 GMT
- Title: Empowering Malware Detection Efficiency within Processing-in-Memory Architecture
- Authors: Sreenitha Kasarapu, Sathwika Bavikadi, Sai Manoj Pudukotai Dinakarrao,
- Abstract summary: Malware detection techniques leveraging Machine Learning have gained popularity.
One major drawback of neural network architectures is their substantial computational resource requirements.
We propose a Processing-in-Memory (PIM)-based architecture to mitigate memory access latency.
- Score: 0.7910057416898179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread integration of embedded systems across various industries has facilitated seamless connectivity among devices and bolstered computational capabilities. Despite their extensive applications, embedded systems encounter significant security threats, with one of the most critical vulnerabilities being malicious software, commonly known as malware. In recent times, malware detection techniques leveraging Machine Learning have gained popularity. Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) have proven particularly efficient in image processing tasks. However, one major drawback of neural network architectures is their substantial computational resource requirements. Continuous training of malware detection models with updated malware and benign samples demands immense computational resources, presenting a challenge for real-world applications. In response to these concerns, we propose a Processing-in-Memory (PIM)-based architecture to mitigate memory access latency, thereby reducing the resources consumed during model updates. To further enhance throughput and minimize energy consumption, we incorporate precision scaling techniques tailored for CNN models. Our proposed PIM architecture exhibits a 1.09x higher throughput compared to existing Lookup Table (LUT)-based PIM architectures. Additionally, precision scaling combined with PIM enhances energy efficiency by 1.5x compared to full-precision operations, without sacrificing performance. This innovative approach offers a promising solution to the resource-intensive nature of malware detection model updates, paving the way for more efficient and sustainable cybersecurity practices.
Related papers
- From Algorithm to Hardware: A Survey on Efficient and Safe Deployment of Deep Neural Networks [23.928893359202753]
Deep neural networks (DNNs) have been widely used in many artificial intelligence (AI) tasks.
deploying them brings significant challenges due to the huge cost of memory, energy, and computation.
Recently, there has been a surge in research of compression methods to achieve model efficiency while retaining the performance.
arXiv Detail & Related papers (2024-05-09T18:17:25Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Optimizing Malware Detection in IoT Networks: Leveraging Resource-Aware Distributed Computing for Enhanced Security [0.6856683556201506]
Malicious applications, commonly known as malware, pose a significant threat to IoT devices and networks.
We present a novel resource- and workload-aware malware detection framework integrated with distributed computing for IoT networks.
arXiv Detail & Related papers (2024-04-12T21:11:29Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices [0.0]
Multiple Deep Neural Networks (DNNs) can be designed to detect and classify malware binaries.
The feasibility of deploying these DNN models on edge devices to enable real-time classification, particularly in resource-constrained scenarios proves to be integral to large IoT systems.
This study contributes to advancing malware detection techniques and emphasizes the significance of integrating cybersecurity measures for the early detection of malware.
arXiv Detail & Related papers (2023-08-21T16:34:46Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Measuring what Really Matters: Optimizing Neural Networks for TinyML [7.455546102930911]
neural networks (NNs) have experienced an unprecedented growth in architectural and computational complexity. Introducing NNs to resource-constrained devices enables cost-efficient deployments, widespread availability, and the preservation of sensitive data.
This work addresses the challenges of bringing Machine Learning to MCUs, where we focus on the ubiquitous ARM Cortex-M architecture.
arXiv Detail & Related papers (2021-04-21T17:14:06Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.