Optimized Approaches to Malware Detection: A Study of Machine Learning and Deep Learning Techniques
- URL: http://arxiv.org/abs/2504.17930v1
- Date: Thu, 24 Apr 2025 20:40:51 GMT
- Title: Optimized Approaches to Malware Detection: A Study of Machine Learning and Deep Learning Techniques
- Authors: Abrar Fahim, Shamik Dey, Md. Nurul Absur, Md Kamrul Siam, Md. Tahmidul Huque, Jafreen Jafor Godhuli,
- Abstract summary: Digital systems find it challenging to keep up with cybersecurity threats.<n>The daily emergence of more than 560,000 new malware strains poses significant hazards to the digital ecosystem.<n>This study explores the ways in which malware can be detected using machine learning (ML) and deep learning (DL) approaches to address those shortcomings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital systems find it challenging to keep up with cybersecurity threats. The daily emergence of more than 560,000 new malware strains poses significant hazards to the digital ecosystem. The traditional malware detection methods fail to operate properly and yield high false positive rates with low accuracy of the protection system. This study explores the ways in which malware can be detected using these machine learning (ML) and deep learning (DL) approaches to address those shortcomings. This study also includes a systematic comparison of the performance of some of the widely used ML models, such as random forest, multi-layer perceptron (MLP), and deep neural network (DNN), for determining the effectiveness of the domain of modern malware threat systems. We use a considerable-sized database from Kaggle, which has undergone optimized feature selection and preprocessing to improve model performance. Our finding suggests that the DNN model outperformed the other traditional models with the highest training accuracy of 99.92% and an almost perfect AUC score. Furthermore, the feature selection and preprocessing can help improve the capabilities of detection. This research makes an important contribution by analyzing the performance of the model on the performance metrics and providing insight into the effectiveness of the advanced detection techniques to build more robust and more reliable cybersecurity solutions against the growing malware threats.
Related papers
- The Road Less Traveled: Investigating Robustness and Explainability in CNN Malware Detection [15.43868945929965]
We integrate quantitative analysis with explainability tools to better understand CNN behavior in malware classification.
obfuscation techniques can reduce model accuracy by up to 50%, and propose a mitigation strategy to enhance robustness.
This work contributes to improving the interpretability and resilience of deep learning-based intrusion detection systems.
arXiv Detail & Related papers (2025-03-03T10:42:00Z) - A Sysmon Incremental Learning System for Ransomware Analysis and Detection [1.495391051525033]
In the face of increasing cyber threats, particularly ransomware attacks, there is a pressing need for advanced detection and analysis systems.<n>Most of these proposals leverage non-incremental learning approaches that require the underlying models to be updated from scratch to detect new ransomware.<n>This approach is problematic because it leaves sensitive data vulnerable to attack during retraining, as newly emerging ransomware strains may go undetected until the model is updated.<n>We present the Sysmon Incremental Learning System for Analysis and Detection (SILRAD), which enables continuous updates to the underlying model and effectively closes the training gap.
arXiv Detail & Related papers (2025-01-02T06:22:58Z) - Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep Learning (DL) techniques.
The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods (Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs) against key performance metrics.
The Decision Tree model performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating the model's ability to detect network breaches effectively.
arXiv Detail & Related papers (2024-08-14T17:11:36Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
This paper proposes the utilization of the Deep Learning Model, LSTM networks, and GAN classifiers to amplify malware detection accuracy and speed.
The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense.
arXiv Detail & Related papers (2024-05-07T14:57:24Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
This study conducts a thorough examination of malware detection using machine learning techniques.
The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively.
arXiv Detail & Related papers (2024-03-04T17:22:43Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Boosting Out-of-Distribution Detection with Multiple Pre-trained Models [41.66566916581451]
Post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems.
We propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models.
Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
arXiv Detail & Related papers (2022-12-24T12:11:38Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
We propose a framework to improve the robustness of adversarial training models.
By co-training's parameters model's weights, the proposed framework consistently improves robustness and steps adaptively for update directions.
arXiv Detail & Related papers (2020-04-25T20:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.